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 Abstract: The article first makes an analysis on characteristic of the RSA numbers based on the factorized 
RSA numbers and the Digital Signature Standard; then it investigates the affection of the divisor-ratio of a RSA 
number to the efficiency of searching the number’s divisors in term of valuated binary tree and puts forward a 
framework for designing algorithms of fast factoring the RSA numbers. Thoughts of the framework are 
presented with detail mathematical deductions. 
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I. INTRODUCTION  
Ever since the RSA Laboratories declared the RSA Factoring Challenge in March 1991, factorization 

of the RSA numbers has become a practical criterion to test an algorithm of factoring integers and thousands of 
people have still kept doing the factorization in spite that the RSA Laboratories have retracted their rewards. 
Literatures show that, nowadays, the Number Field Sieve (NFS) is regarded as the most efficient method to 
factorize the RSA numbers, as introduced and surveyed in articles [1] to [7]. But unfortunately the NFS will 
take a vast mount of memory in the computation and it has no chance to apply the method on conventional 
personal computers. Hence new approaches are still under development. For example, article [8] proposed 
MPFA, article [9] proposed Factorization Using Multiplication Table, articles [10] proposed an formula for 
approximately testing divisors of a semiprime, articles [11] and [12] proposed constructing sieves of odd 
composite numbers. In February 2017, I introduced a new approach in article [13]. That approach can exactly 
locate the divisors of a composite odd number in a definite interval by means of valuated binary tree that was 
proposed in article [14] and can be applied in either sequential mode or parallel environment. Articles [15] and 
[16] followed the approach and designed their algorithms. These days, I had a look at the algorithms in articles 
[13], [15] and [16] and found that they might not be of high efficiency in factoring the RSA numbers although 
they can efficiently factorize odd composite numbers in the form N=pq such that /k q p=  is relatively big or N 
has a lot of divisors.   

It is obviously that one should know some internal characteristic of a RSA number before starting 
factoring it. Based on such a thought, this article makes a brief investigation on RSA numbers and points out a 
direction to design algorithm for factoring a RSA number.  

 
II. LEMMAS 

Lemma 1(See in [17]). Let p be a positive odd integer; then among p consecutive positive odd integers 
there exists one and only one that can be divisible by p. 

Lemma 2(see in [13]). Let 2n ≥ and 1 2... nN p p p= , where 1 2, ,..., np p p are odd numbers bigger than 1; 

then the bigger n is, the easier N is factorized. If 2n = and 1 2p p< ; then the bigger 2

1

p
p

κ =  is, the easier N is 

factorized. 
Lemma 3(see in [13]). Let N pq=  be an odd composite number such that 1 22 1 2 1m mN+ ++ ≤ ≤ −  and 

2m > , where p and q are odd coprimed numbers that fit 3 p q≤ < ; let symbols ( 1,0)
N
mN +  and 

( 1,2 1)m
N
m

N
+ −

 be 
respectively the leftmost and the rightmost nodes on level m+1 in the left branch of the n-rooted valuated binary 
tree NT ; let ( 1, ( ))

N
m qN ω+ and ( 1, ( ))

N
m pN ω+  indicate respectively the first q’s and p’s multiple-nodes left to 

( 1,2 1)m
N
m

N
+ −

, 

( 1, ( ))
N
m qpN ξ+  be the node that is left to and 1

2
N⎢ ⎥+

⎢ ⎥
⎢ ⎥⎣ ⎦

 nodes away from 
( 1,2 1)m
N
m

N
+ −

, and  1( 1,2 1)m
N
m

N −+ −
be the mid-node 

that is right to and 12m− nodes away from ( 1,0)
N
mN + ; then it holds 

(1) Nodes 1
( 1,2 1)

2 1m
N m
m

N N+
+ −

= − . 
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(2) There are exact 1
2

p + nodes from ( 1, ( ))
N
m pN ω+ to 

( 1,2 1)m
N
m

N
+ −

 and exact 1
2

q + nodes from ( 1, ( ))
N
m qN ω+ to 

( 1,2 1)m
N
m

N
+ −

. 

(3) ( 1, ( ))gcd( , )N
m pp N N ω+=  and ( 1, ( ))gcd( , )N

m qq N N ω+= ,where gcd means the greatest common divisor. 

(4) The distribution of ( 1,0)
N
mN + , ( 1, ( ))

N
m qN ω+ , 1( 1,2 1)m

N
m

N −+ −
, ( 1, ( ))

N
m qpN ξ+ , ( 1, ( ))

N
m pN ω+  and 

( 1,2 1)m
N
m

N
+ −

on level m+1 is as 

figure 1 illustrates. 

Fig.1 Distribution of Critical Nodes (m>2) 

 
Lemma 4. Let N be an integer; then it holds 

2
0N N⎢ ⎥− ≥⎣ ⎦  

Proof. By definition of the floor function, it holds for arbitrary real number x 

1x x x⎢ ⎥− < ≤⎣ ⎦  

Hence for integer N it yields N N⎢ ⎥ ≤⎣ ⎦ and thus 
2

0N N⎢ ⎥− ≥⎣ ⎦ . 

 
 

III. CHARACTERISTIC OF A RSA NUMBER  
 
The RSA numbers are a set of large semiprimes. A semiprime is an odd composite number N that has 

exactly two prime factors, say p and q, such that 3 p q≤ < . The two divisors of a RSA number N, p and q are 
required to be both safeprimes. A safeprime p is a prime that satisfies 2 1p u= + and u is a prime. Hence a RSA 
number is a large semiprime that has two safeprimes as its divisors.  

According to Lemma 1, if N pq=  ( 3 p q< < ) is a RSA number, then /k q p= , which is called 
divisor-ratio, cannot be too big; otherwise it is not a safe RSA number. Actually, the Digital Signature Standard 
(DSS) [17] proposes that a safe k should be  

1 2k< <                                                                           (1) 

We made a simple experiment to calculate the divisor-ratios of the RSA numbers that have already 
been factorized and found that, most factorized RSA numbers match to (1), as list in table 1. 

 
 Table 1 Divisor-ratio in Factorized RSA Numbers 

No. RSA numbers /k q p= 1 2k< < ? 1 2k< < ? 1 2 2k< ≤ ? 

 Range of q’s multiple node        Range of p’s multiple node 

( 1,0)
N
mN + ( 1, ( ))

N
m qN ω+     1( 1,2 1)m

N
m

N −+ − ( 1, ( ))
N
m qpN ξ+ ( 1, ( ))

N
m pN ω+ ( 1,2 1)m

N
m

N
+ −

 

                                   1
2

N⎢ ⎥+
⎢ ⎥
⎢ ⎥⎣ ⎦

 

12m−   
 
                         2m  
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1 RSA100 1.056 Yes Yes Yes 

2 RSA110 1.047 Yes Yes Yes 

3 RSA120 2.118 No No Yes 

4 RSA129 93.880 No No No 

5 RSA130 1.147 No Yes Yes 

6 RSA140 1.843 No Yes Yes 

7 RSA150 1.281 Yes Yes Yes 

8 RSA155 1.039 Yes Yes Yes 

9 RSA160 1.043 Yes Yes Yes 

10 RSA170 1.188 Yes Yes Yes 

11 RSA180 1.190 Yes Yes Yes 

12 RSA190 1.897 No Yes Yes 

13 RSA200 2.244 No No Yes 

14 RSA210 1.290 Yes Yes Yes 

15 RSA220 2.084 No No Yes 

16 RSA576 1.188 Yes Yes Yes 

17 RSA640 1.163 Yes Yes Yes 

18 RSA704 1.116 Yes Yes Yes 

19 RSA768 1.098 Yes Yes Yes 

 

Based on the above DSS and experimental results and according to Lemma 2, it is natural to draw out 
the following proposition. 

Proposition 1. Let N=pq be a RSA number; then the p’s multiple-node is quite close to the q’s 
multiple-node in TN. 

 
 

IV. CHARACTERISTIC OF FACTORING RSA NUMBERS WITH TN  
Note that p N≤ and q N≥ ; it yields 

1p N⎢ ⎥< +⎣ ⎦  and q N⎢ ⎥≥ ⎣ ⎦  

where the symbol ⎢ ⎥⎣ ⎦  means the floor function.                           

Since p and 1N⎢ ⎥ +⎣ ⎦ are integers, it further yields 

 p N⎢ ⎥≤ ⎣ ⎦  and q N⎢ ⎥≥ ⎣ ⎦                                                                (2) 
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Assume p N α⎢ ⎥= −⎣ ⎦  and q N β⎢ ⎥= +⎣ ⎦ , where α and v are positive integers; let 

  

Nq k
p N

β

α

⎢ ⎥ +⎣ ⎦= =
⎢ ⎥ −⎣ ⎦

                                                                   (3) 

then  

( 1)k k Nα β ⎢ ⎥+ = − ⎣ ⎦                                                                 (4) 

On the other hand, N pq=  yields 

2
( )( ) ( )N N N N Nα β β α αβ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + = + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Namely, 

2
( )N N Nβ α αβ⎢ ⎥ ⎢ ⎥− = − −⎣ ⎦ ⎣ ⎦  

By Lemma 3, it holds 

( ) 0Nβ α αβ⎢ ⎥− − ≥⎣ ⎦  

which results in  

N

N

α
β

α

⎢ ⎥
⎣ ⎦≥

⎢ ⎥ −⎣ ⎦
                                                                            (5) 

Now (4) and (5) yield 

( 1)
N

k N k
N

α
α

α

⎢ ⎥
⎣ ⎦⎢ ⎥− − ≥⎣ ⎦ ⎢ ⎥ −⎣ ⎦

 

Namely 

22 2 ( 1) 0k k N k Nα α⎢ ⎥ ⎢ ⎥− + − ≥⎣ ⎦ ⎣ ⎦  

which leads to 

1(1 ) N
k

α ⎢ ⎥≤ − ⎣ ⎦                                                                       (6) 

Or 

1 1(1 ) (1 )N N
k k

α
⎢ ⎥ ⎢ ⎥

⎢ ⎥≤ − = −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

                                                      (7) 
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Obviously, the smaller k is, the smaller α is and thus the closer p is to N⎢ ⎥
⎣ ⎦ . Now turn to finding p’s 

multiple-node on level 1m + in the left branch of the valuated binary tree NT .  

Let 1
1 ( 1,2 1)

2 1m
b N m
m m

e N N+
+ + −
= = − , 1 ( 1, ( ))

p N
m m pe N ω+ +=  and 0

1 ( 1, ( )) 1
12( 1)

2
N b

m m qp m
Ne N eξ+ + +

⎢ ⎥+
= = − −⎢ ⎥

⎢ ⎥⎣ ⎦
; then by 

Lemma 3, there are 1
2

N⎢ ⎥+
⎢ ⎥
⎣ ⎦

 nodes from 0
1me +  to 1

b
me +  and there are 1

2
p +  nodes from 1

p
me +  to 1

b
me + ; thus there 

are 1 1
2

α +⎢ ⎥ +⎢ ⎥⎣ ⎦
 nodes from 0

1me +  to 1
p
me + . When α takes its maximal value by max

1(1 ) N
k

α
⎢ ⎥

= −⎢ ⎥
⎣ ⎦

, it leads to 

the following Theorem 1. 

Theorem 1. Suppose N pq=  is a RSA number and 1qk
p

= > ; Let 0
1me +  and 1

b
me +  be nodes in the 

valuated binary tree NT  and max
1(1 ) N
k

α
⎢ ⎥

= −⎢ ⎥
⎣ ⎦

; then it needs at most max 1
1

2kn
α +⎢ ⎥= +⎢ ⎥⎣ ⎦

steps to find p’s 

multiple-node by searching from 0
1me +  towards 1

b
me + ; and the smaller k is, the less steps are needed.  

For example, when 2k = , it requires at most 0.08 1N⎢ ⎥ +⎣ ⎦ steps; when 2k = it requires at most 

0.15 1N⎢ ⎥ +⎣ ⎦ steps; when 2 2k = , it requires at most 0.21 1N⎢ ⎥ +⎣ ⎦ steps. 

V. STRATEGY FOR ALGORITHM DESIGN 
 
Theorem 1 indicates that, for a RSA number N pq= , starting searching 1

p
me + from 0

1me +  towards 

1
b
me + will take less time. This provides a direction to design algorithm. A natural and general thought is as 

follows. 

Step 1. Constructing an right odd interval kI (definition in [16]) that takes 0
1me +   

as its left-end and contains kn  nodes.  

Step 2. Subdivide kI into finite subintervals if the number of nodes in kI  is big. 

Step 3. Search in the subintervals to find the p’s multiple-node until it is found. 

The above thought is obviously very rough. It still needs solving some detail technical problems in a 
practical algorithm design. For example, the first one is how to subdivide kI ; the second is how to efficiently 
search in the subintervals; and the third one is the choice of k. Since the second problem concerns with a popular 
technical topic, this article does not spend time discussing it and leaves it for another investigations. Here only 
discuss the subdivision and the k’s affection. 

5.1 Subdivision of Interval 

Article [16] presented an approach to subdivide the interval kI . By that approach, kI  is divided into 
2 1n + subintervals with 2n equal-length subintervals and a remainder mid-subinterval, as depicted by figure 2. 
Then the search can be performed by first searching the mid-subinterval and then the other 2n symmetrically 
distributive subintervals. Hence it is a middle-first subdivision. 
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Fig. 2 A middle-first subdivision 

This approach of course works well for a general parallel computation provided that kI is properly set. 
On the other hand, there is a left-first subdivision that is better than the middle-first one when factoring a RSA 
number. The left-first subdivision subdivides kI  into 1m + subintervals in which m subintervals are of equal 

length and one that is the closest to 0
1me + is not equal to the others, as depicted by figure 3. 

Fig. 3 A left-first subdivision 

Let M be the number of nodes in the m equal-length subintervals; let 0 modkn n M=  be the number of 

nodes in 0I  and kn
m

M
⎢ ⎥= ⎢ ⎥⎣ ⎦

; then it knows that each of the m equal-length subintervals contains M nodes and it 

yields 

0 0
0 1 1 0

0 0
1 1

[ , 2( 1)],

[ 2 , 2( 1) 2], 1,2,...,
m m

j m m

I e e n

I e jM e j M j m
+ +

+ +

= + −

= + + + − =
 

 

5.2 Affection of Divisor-ratio k 

As stated previously, the divisor-ratio k is also a key to determine the size of kI . By Theorem 1, it 

knows that, for a RSA number N pq= a smaller /k q p=  will make p’s multiple-node closer to N⎢ ⎥
⎣ ⎦  and thus 

it will take less time to search rightward from 0
1me +  to 1

b
me + . Since k is unknown before N is factorized, it is 

necessary to make clear whatever k generally affects the algorithm design.  

By Lemma 3 and Theorem 1, the interval 0 0 max
1 1

1[ , 2 ]
2k m mI e e α

+ +

+⎢ ⎥= + ⎢ ⎥⎣ ⎦
, denoted by 0

1 1[ , ]k
m me e+ + , is the 

searching objective interval and the interval 0
1 1[ , ]b

abs m mI e e+ +=  is the interval that p’s multiple-node does exist. It 
immediately sees the following facts, as shown in figure 4. 

(i) When 4k ≥ , 0
1 1

12( 1)
4

k
m m

Ne e+ +

⎢ ⎥+
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 lies in the middle of absI ; 

  Il1   Il2    Il3                 Imid            Ir3    Ir2   Ir1  
          

n subintervals                      n subintervals 
                           Ik   

    I0    I1   I2     I3            Im-2  Im-1   Im 

                    m subintervals 

m+1 subintervals 
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(ii) When 16k ≥ , 0
1 1

12( 1)
8

k
m m

Ne e+ +

⎢ ⎥+
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 lies in the middle of right half absI ; 

Fig. 4 k & searched interval 

Consequently, it can see that 4k = is a critical value. When 4k ≥ , kI exceeds half of the interval absI  
whose size might be very big. 

On the other hand, by p N α⎢ ⎥= −⎣ ⎦  and (7), it knows that, a bigger k will bring a bigger α  and 

might make 1
p
me + closer to 1

b
me + since there are exact 1

2
p + nodes from 1

p
me +  to 1

b
me + . In fact, by N pq= , it is true 

that Np
λ

≤ must lead to q Nλ≥ for any 0λ > ; therefore 2/k q p λ= ≥ if Np
λ

≤ , which says 1
p
me + must lie in 

the right half of absI  when 2λ ≥ or 4k ≥ .      

5.3 Framework of Algorithm Design 

Referring to the analysis on KI ’s subdivision and k’s affection to the searching intervals, a general 
framework for algorithm design is proposed as follows. 

 

 

 

 

 

 

 

                 Remark: The above framework has got only one exception RSA129 referring to Table 1. 

Based on the above framework, several algorithms are designed to factorize semiprimes. A most 
memorable sample is the factorization of a 40-digit odd semiprime  

N=1600000000000000229500000000000003170601 

whose factorization is  

N= 20000000000000002559× 80000000000000001239 

 0
1me +                         1

b
me +  

4k =  

16k =  

64k =  

256k =  

...k =  

Framework of Algorithm Design By Using TN 

Step 1. Calculate max (1 1/ )k Nα ⎢ ⎥= −⎣ ⎦ , 1
1 2 1b m

me N+
+ = − , 0

1 1 2( 0.5( 1) 1)b
m me e N+ +

⎢ ⎥= − + −⎣ ⎦ , 

0
1 1 max2 0.5( 1)m me eα α+ += + +⎢ ⎥⎣ ⎦  and 0

1 1 2( 0.25( 1) 1)h
m me e N+ +

⎢ ⎥= + + +⎣ ⎦ ; 

Step2. Construct intervals 0
1 1[ , ]h

m me e+ + , 1 1[ 2, ]h
m me eα+ ++ , 

Step 3. Subdivide 0
1 1[ , ]h

m me e+ +  and 1 1[ 2, ]h
m me eα+ ++ into subintervals if their sizes are big; 

0 1 2
1 1[ , ] ...h s

m m l l le e I I I+ + = ∪ ∪ ∪ ; 1 2
1 1[ 2, ] ...h b t

m m r r re e I I I+ ++ = ∪ ∪ ∪ ;
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It took only 562 steps of search to factorize it with a personal computer with an Intel Xeon E5450 
CPU and 4GB memory via C++ gmp big number library, as shown in figure 5.  

 
Fig. 5 Screen-shot of program’s running 

 
VI. CONCLUSION  

Factorization of The RSA numbers continues testing kinds of factoring algorithm. This article analyzes 
the characteristic of the RSA numbers in a way different from the classical ones. Like the lock and its key, a 
suitable key can naturally unlock a lock. I hope the analysis in this article will be the key to unlock the RSA lock. 
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