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Abstract: We envision a future where real-time computation on the battlefield provides the tactical advantage
to an Army over its adversary. The ability to collect and process large amounts of data to provide actionable
information to soldiers will greatly enhance their situational awareness. Our vision is based on the observation
that the U.S. Military is attempting to equip soldiers with smartphones. While individual phones may not be
sufficiently powerful for processing large amount of data, using the mobile devices carried by a squad or
platoon of Soldiers as a single distributed computing platform, a Tactical Cloud, would enable large-scale data
processing to be conducted in battlefields. In order for this vision to be realized, two issues have to be
addressed. The first is the complexity of writing applications for distributed computing environments, and the
second is the vulnerability of data on mobile devices. In this paper, we propose combining two existing
technologies to address these issues. The first is Hadoop MapReduce, a scalable platform that provides
distributed storage and computational capabilities on clusters of commodity hardware, and the second is the
Mobile Distributed File System (MDFS) which allows distributed data storage with built-in reliability and
security. By making the MDFS file system work with Hadoop on mobile devices, we hope to enable big data
applications on tactical clouds.
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. Introduction

With advances in technology, mobile devices are becoming capable computing platforms. The new
generations of mobile devices are relatively powerful with gigabytes of memory and multi-core processors.
These devices have sophisticated applications and sensors capable of generating and collecting hundreds of
megabytes of data. This data can range from raw application data to images, audio, video, or text files. With
these enhancements in mobile device capabilities, big data processing in environments such as disaster recover
sites and battlefields is becoming a reality [1]. There is currently an effort by the military to equip Soldiers with
smartphones [2]. We propose utilizing these mobile devices to collect and process data in order to provide
Soldiers with enhanced situational awareness. Current mobile applications that perform massive computing
tasks, such as big data processing, offload data and tasks to data centers or powerful servers in the cloud [3].
Hadoop MapReduce [4] is one of the frameworks that exist to make such computation easier. It splits user jobs
into smaller tasks and runs them in parallel on different nodes, reducing the overall execution time. In extreme
environments, access to the traditional cloud may not be available.

Thus, the ability to carry out computation across a group of mobile devices, a Tactical Cloud carried by
a squad of Soldiers or a team of first responders, is essential. This requires a Hadoop-like framework that is
resilient to network failures and can operate across wireless mobile ad-hoc networks [5] typical of such
scenarios. A concern that has to be addressed to enable distributed computation across mobile devices is data
security, due to the envisioned applications for such systems involving sensitive information [6], [7].

Traditional security mechanisms tailored for static networks are inadequate for tactical clouds (i.e.,
tacticalgrade security) due to the ease with which mobile devices can be lost or captured (and data could be
compromised, even if encrypted). One approach proposed to address this security vulnerability is the k-out-of-n
computing framework [8] which distributes data across n nodes with the property that the data from at least k
nodes is necessary to reconstruct the original information. In this paper, we replace Hadoop’s native distributed
file system, HDFS [9], with the Mobile Distributed File System (MDFS) [8], [10] that uses the k-out-of-n
principle in order to provide the security necessary for the application domain.

In addition to the lack of tactical-grade security, a main drawback of HDFS in mobile environments is
its inefficient use of resources. HDFS does not consider device energy and relies on low latency and high
availability networks to replicate file blocks across multiple devices to increase reliability. Interestingly, the
aforementioned k-out-of-n-enabled MDFS [8], [10] also ensures high energy efficiency. Replacing HDFS with
MDFS mitigates these drawbacks while allowing Hadoop MapReduce to be used as a framework for distributed
computing on mobile devices, with the following benefits: 1) parallel task execution which prevents a single
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device becoming a performance bottleneck; 2) efficient and fault tolerant resource management, task
scheduling, and job execution; and 3) extensive testing and usage for a large number of applications over the
years. The military provides a unique opportunity to leverage the power of Hadoop MapReduce operating on
tactical clouds with a reliable and secure distributed file system. The opportunity arises due to the presence of a
collection of mobile devices within a single domain of ownership. While it’s much harder to find a group of
people willing to allow their mobile phones to be used as a computing device within other domains, government
issued mobile devices could be configured to be part of a distributed computing platform within the military.
Such a tactical cloud would enable a number of applications to be implemented that are beneficial to Soldiers.
An example of an existing application that could greatly benefit from Hadoop MapReduce in tactical clouds is
the TIGR [11] system used in Iraq by deployed soldiers. This system collects information from past missions
and allows for
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Fig. 1. Hadoop architecture with MapReduce and HDFS components. Steps 1-4 illustrate HDFS
read/write operation

continuity of situational awareness through numerous troop rotations. Before TIGR, as troops rotate out
of the theater, intelligence collected in previous missions were lost. TIGR provides a large amount of
information, in the form of pictures, audio, video, and text collected over multiple missions that soldiers can
manually search through. With Hadoop, the most relevant data from TIGR could be distributed across the
tactical cloud using MDFS before Soldiers head out into the field. In addition, Soldiers can store new data they
collect on their mobile devices. The platoon leader or squad commander could use MapReduce to extract
intelligence from this data by mapping tasks such as advanced text processing or media analysis to each device,
and reducing the information output by these tasks to a centralized device for visualization. In this paper, we
enable Hadoop MapReduce across mobile devices by replacing its default filesystem with MDFS and evaluate
its performance on a general heterogeneous cluster of devices. We modify MDFS to match the interface of
HDFS, which would allow other Hadoop frameworks, such as HBase, to be used on tactical clouds. This
approach also enables existing HDFS applications to be deployed across mobile devices without requiring any
modifications. To the best of our knowledge, this is the first system that enables Hadoop MapReduce across
mobile devices while addressing the security requirements of domains such as the military.

1. Background, State Of Art And Challenges

A. Hadoop and MDFS Overview

The two primary components of Apache Hadoop are MapReduce, a scalable and parallel processing
framework, and HDFS, the filesystem used by MapReduce (Figure 1). Within the MapReduce framework, the
JobTracker and the TaskTracker are the two most important modules. The JobTracker is the MapReduce master
daemon that accepts the user jobs and splits them into multiple tasks. It then assigns these tasks to MapReduce
slave nodes in the cluster called TaskTrackers. TaskTrackers are the processing nodes in the cluster that run the
Map and Reduce tasks. The JobTracker is responsible for scheduling tasks on the TaskTrackers and re-
executing the failed tasks. HDFS is a reliable, fault tolerant distributed file system designed to store very large
datasets. Its key features include load balancing, configurable block replication strategies and recovery
mechanisms for fault tolerance, and auto scalability.
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In HDFS, each file is split into blocks and each block is replicated to several devices across the cluster.
As shown in Figure 1, HDFS contains the NameNode and DataNode modules. The NameNode is the file system
master daemon that holds the files’ metadata and inode records of files and directories. An inode contains
various attributes, e.g., name, size, permissions and last modified time. DataNodes are the file system slave
nodes which are the storage nodes in the cluster. They store the file blocks and serve read/write requests from
the client.

The NameNode maps a file to the list of its blocks and the blocks to the list of DataNodes that store
them. When the HDFS client initiates the file read operation, it tries to read the block from the closest
DataNodes to minimize the read latency and maximize the throughput. When the HDFS client writes data to a
file, it initiates a pipelined write to a list of DataNodes chosen by the NameNode based on the pluggable block
placement strategy. Each DataNode receives data from its predecessor in the pipeline and forwards it to its
successor. Plain File Encrypted Encrypted AES AES Erasure Coding Secret Sharing Fig. 2. Existing MDFS
architecture MDFS [12], [8], [10] is a file system that is especially suitable for battle- field computation on
mobile devices provided to frontline troops. Computation occurs across a mobile ad-hoc network formed from a
collection of these mobile devices, a Tactical Cloud, where each node can enter or move out of the cloud freely.
MDFS is built on a k-out-of-n framework which provides energy efficiency, data security and reliability. As
shown in Figure 2, every file is encrypted using a secret key and partitioned into nl file fragments using erasure
encoding (Reed Solomon algorithm). The key is also split into n2 fragments using Shamir’s secret key sharing
algorithm. File creation is complete when all the key and file fragments are distributed across the cluster. For
file retrieval, a node has to retrieve at least k1 (< nl) file fragments and k2 (< n2) key fragments to reconstruct
the original file. The MDFS architecture provides high security by ensuring that data cannot be decrypted unless
an authorized user obtains k2 distinct key fragments. It also ensures resiliency by allowing the authorized users
to reconstruct the data even after losing n1-k1 fragments of data. This scheme optimally distributes key and file
fragments to the selected storage nodes such that each node contains at most one key fragment and one file
fragment for each file, thereby ensuring higher reliability and security. MDFS provides a fully distributed
directory service in which each node in the network periodically synchronizes its stored fragments and the
corresponding key information with other nodes.
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Fig. 2. Existing MDFS architecture

computing on smartphones. In Hyrax, Hadoop TaskTracker and DataNode processes were ported to
Android smartphones while a single instance of NameNode and JobTracker were run in a single server. Such a
porting of processes directly onto mobile devices does not address the shortcomings of Hadoop in mobile
environments. As described earlier, HDFS is not well suited for dynamic, tactical environments. Another
MapReduce framework, Misco [14] was implemented on Nokia smartphones. It has a server-client model,
similar to Hyrax, where the server keeps track of various user jobs and assigns them to workers on demand. Yet
another server-client model based MapReduce system was proposed over a cluster of mobile devices [15] where
the mobile client implements MapReduce logic to retrieve work and obtain results from the master node.
Finally, P2P-MapReduce [16] describes a prototype implementation of a MapReduce framework which uses a
peer-to-peer model for parallel data processing in dynamic cloud topologies.

These solutions, however, do not solve the issues involved in the storage and processing of large
datasets within the dynamic network. Huchton et al. [12] proposed a first version of a k-resilient Mobile
Distributed File System (MDFS) for mobile devices targeted primarily for military operations. Chen et al. [10]
proposed a new resource allocation scheme based on the k-outof-n framework and integrated it with MDFS, for
significant improvements in energy consumption. We replace HDFS in Hadoop with this k-out-of-n-enabled
MDFS to ensure energy efficiency, reliability, and security of Hadoop in tactical, mobile environments. For
implementing the MapReduce framework over MDFS, a number of major challenges have to be addressed. The
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first is overcoming the limited file system functionality of MDFS, which supports only read(), write() and list().
The MapReduce framework requires a much wider range of file system operations. The MapReduce framework
must also remain compatible with available HDFS applications without code modification or extra
configuration. The second challenge is the fact that the MapReduce framework needs read/write streaming (i.e.,
reading/writing data byte by byte). MDFS can not support read/write streaming. The third challenge is to
provide the JobTracker the data locality information that it needs for assigning tasks to TaskTrackers. In MDFS,
since no node in the network has a complete block for processing, determining the best locations for task
execution is a challenge. Finally, Hadoop uses the network topology to obtain rack awareness. If the node
holding the data for processing is not available for task execution, the scheduler selects another node in the same
rack. This allows the MapReduce framework to leverage the higher bandwidth of in-rack switching. Such
locality is not present in MANETS due to their dynamic network topology, and thus defining rack awareness is a
challenge.

111. System Design
In the MDFS architecture, a file to be stored is encrypted and split into n fragments such that any k
(fragments are sufficient to reconstruct the original file. In this architecture, parallel file processing is not
possible as even a single byte of data cannot be read without retrieving the required number of fragments.
Similar to the MapReduce framework which assumes that the input file is split into blocks (distributed across
the cluster), we introduce blocks into MDFS. In our approach, given a configurable block size, a file is split into
a corresponding number of blocks. Each block is then split into fragments that are stored across the cluster.

Client Node (] Map Task
— ] Reduce Task
Fio
e ragments
e ) B
Master Node Slave Node 1 | Slave Node 2
Hadoop JobTracker MapReduce Layer Hadoop Hadoop
‘ ) Mapmeduce Laye (9 (o) 3
1
MDFS Client MDES Client E| MDFS Client E|
MDFS Layer
L El_m "~ Mo T
i i ata Server I Data EI
|(-—-\I| : : | Server
Name Server | I I I
: I File Retrieval !
| ! ! Module !
1
Block 1 E t M I ! I
: il 1Y l
Block 2 {1 !
| [ ae [ [ ;
A Al o i
: |: Block 2 e
I K
1 1 —Tr———— P _— e ] = ———1
| '3 . -ma : u ..ﬂu'—ﬂ.—n Y Rouorn
[ | amework framework Tamew
6
Assign Matadata
4 5 6
Tasks Operations Fragment Data 5 Data
N Read
| 4 Operations L Read +
| Metwork ]

Fig. 3. Centralized Architecture of MDFS. Steps 1-10 illustrate data read operation

A. System Architecture We propose two approaches for our MDFS architecture: a Distributed
architecture where there is no central entity to manage the cluster and a Centralized one, as in HDFS. The user
chooses one architecture during the cluster startup based on the working environment. 1) Centralized
Architecture: This architecture is depicted in Figure 3 which includes MDFS Client(s), a Name Server, Data
Servers and a Fragment Mapper. Users invoke file system operations using the MDFS client, a built-in library
that implements a file system abstraction for upper layer applications. This allows the user to be unaware of file
metadata or the storage locations of file fragments. Instead, the user can reference each file by paths in the
namespace. The paths use a URI format, e.g. scheme://authority/path where the scheme decides the file system
to be instantiated, e.g. mdfs, and the authority is the Name Server address. The Name Server and Fragment
Mapper are implemented as singleton instances across the cluster. The Name Server is a lightweight MDFS
daemon that stores the hierarchical organization, or the namespace, of the file system. All file system metadata
including the mapping of a file to its list of blocks is also stored in the MDFS Name Server. The Name Server
has the same functionality as Hadoop’s NameNode. The MDFS client and MDFS Name Server are unaware of
the fragment distribution, which is handled by the Data Server. The Data Server is a lightweight MDFS daemon
instantiated on each node in the cluster. It coordinates with other MDFS Data Server daemons to handle MDFS
communication tasks like neighbor discovery, file creation, file retrieval and file deletion. Unlike Hadoop
DataNode, the Data Server has to be instantiated on all nodes in the network where data flow operations such as
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reads and writes are invoked. This is because the Data Server prepares the data for these operations and they are
always executed in the local file system of the client. We kept the namespace management and data
management totally independent for better scalability and design simplicity.
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Fig. 4. Distributed Architecture of MDFS with data read operation

The Fragment Mapper stores information of file and key fragments which include the fragment
identifiers and the location of fragments. It stores the mapping of a block to its list of key and file fragments.
These daemons can be run on any node in the cluster. The node that runs these daemons is called the Master
Node. MDFS stores metadata on the Master Node similar to other distributed systems like HDFS, GFS [17] and
PVFS [18]. The major disadvantage of the centralized approach over the distributed approach is the master node
being a single point of failure. However, this problem can be mitigated by configuring a Standby Node in the
configuration file. The Standby Node is updated by the Master Node whenever there is a change in the file
system metadata. The Master Node signals success to client operations only when the metadata change is
reflected in both the master and standby nodes. Hence, data structures of the master and standby node are
always synchronized ensuring smooth fail-over. The Master Node can become overloaded when a large number
of mobile devices are involved in processing. There are several distributed systems like Ceph [19] and Lustre
[20] that use multiple servers which manage the file system metadata evenly and avoid scalability bottlenecks of
a single metadata server. MDFS can efficiently handle hundreds of megabytes with a single metadata server. 2)
Distributed Architecture: In this architecture, depicted in Figure 4, every participating node runs a Name Server
and a Fragment Mapper. The functionality (hence the description) of the MDFS Client, Name Server, Data
Server, etc. is the same as in the Centralized Architecture. After every file system operation, the update is
broadcast in the network so that the local caches of all nodes are synchronized. Moreover, each node
periodically synchronizes with other nodes by sending broadcast messages. Any new node entering the network
receives these broadcast messages and creates a local cache for further operations. This architecture has no
single point of failure and no constraint is imposed on the network topology. Each node can operate
independently, as each node stores a separate copy of the namespace and fragment mapping. The load is evenly
distributed across the network in terms of metadata storage, in contrast to the centralized architecture. However,
network bandwidth and device energy are wasted due to the messages broadcast by each node for updating the
local cache of every other node in the network. As the number of nodes involved in processing increases, this
problem becomes more severe, leading to higher response time for each user operation. Also, memory is wasted
due to the metadata being replicated on all the devices. B. MDFS Operations 1) File Read: The design of HDFS
read operation cannot be used in MDFS. For any block read operation, the required number of fragments has to
be retrieved, then combined and decrypted. Unlike HDFS, an MDFS block read operation is always local to the
reader as the block to be read is first reconstructed locally.

IV. Performance Evaluation
In this section, we present performance results and identify bottlenecks in processing large input
datasets. For measuring the performance of MDFS on mobile devices, we ran Hadoop benchmarks on a
heterogeneous mobile wireless cluster consisting of 1 personal desktop computer (Intel Core 2 Duo 3 GHz
processor, 4 GB memory), 10 netbooks (Intel Atom 1.60 GHz processor, 1 GB memory, Wi-Fi 802.11 b/g
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interface) and 3 HTC Evo 4G smartphones running Android 2.3 OS (Scorpion 1Ghz processor, 512 MB RAM,
Wi-Fi 802.11 b/g interface). We have used Apache Hadoop stable release 1.2.1 [21] for our implementation.
Our MDFS framework consists of 18,365 lines of Java code, exported as a single jar file. The MDFS code does
not have any dependency on the Hadoop code base. Similar to DistributedFileSystem class of HDFS, MDFS
provides MobileDistributedFS class that implements FileSystem, the abstract base class of Hadoop for
backwards compatibility of all present HDFS applications. Since no changes are required in the existing code
base for MDFS integration, the user can upgrade to a different Hadoop release without any conflict. We used
TeraSort, a well-known benchmarking tool that is included in the Apache Hadoop distribution. Our benchmark
run consists of generating a random input data set using TeraGen and then sorting the generated data using
TeraSort. We considered the following metrics: 1) Job completion time of TeraSort; 2) MDFS Read/Writes
Throughput; and 3) Network bandwidth overhead. We are interested in the following parameters: 1) Size of
input dataset; 2) Block Size; and 3) Cluster Size. Each experiment was repeated 15 times and average values
were computed. The parameters k and n are set to 3 and 10, respectively for all runs. Each node is configured to
run 1 Map task and 1 Reduce task per job. As this paper is the first work that addresses the challenges in
processing of large datasets in mobile environment, we do not have any solutions to compare against.
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A. Effect of Block Size on Job Completion Time The parameter ‘dfs.block.size’in the configuration file
determines the default value of block size. It can be overridden by the client during file creation if needed.
Figure 5(a) shows the effect of block size on job completion time. For our test cluster setup, we found that the
optimal value of block size for a 50MB dataset is 4 MB. The results show that the performance degrades when
the block size is reduced or increased further. A larger block size will reduce the number of blocks and thereby
limit the amount of possible parallelism in the cluster. By default, each Map task processes one block of data at
a time. There has to be a sufficient number of tasks in the system such that they can be run in parallel for
maximum throughput. If the block size is small, there will be more Map tasks processing less data. This would
lead to more read and write requests across the network, which can be costly in a mobile environment. Figure
5(b) shows that processing time is 70% smaller than the network transmission time for the TeraSort benchmark.
So, tasks have to be sufficiently long enough to compensate the overhead in task setup and data transfer for
maximum throughput. For real world clusters, the optimal value of block size must be obtained experimentally.

B. Effect of Cluster Size on Job The cluster size determines the level of possible parallelization in the
cluster. As the cluster size increases, more tasks can be run in parallel, thus reducing the job completion time.
Figure 6 shows the effect of cluster size on job completion time. For larger files, there are several map tasks that
can be operated in parallel depending on the configured block size. As shown in the figure, the increase in the
cluster size results in increased performance. For smaller files, the performance is not affected much by the
cluster size, as the performance gain obtained as part of parallelism is comparable to the additional cost incurred
in the task setup.
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C. Effects of Node Failure Rate on Job Completion Time The benchmark is run for 10 iterations for 100 MB
data. Node failures are induced by turning off the wireless interface during the processing stage. This emulates
real world situations wherein devices get disconnected from the network due to hardware or connection failures.
In Figure 7, one, two and three simultaneous node failures are induced in iterations 3, 5 and 8 respectively and
original state is restored in the succeeding iteration. The job completion time is increased by 10% for each
failure but the system successfully recovered from these failures.
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In the MDFS layer, the k-out-of-n framework provides data reliability. If a node containing fragments
is not available, the k-out-of-n framework chooses another node for the data retrieval. Since the k and n
parameters are set to 3 and 10 respectively, the system can tolerate up to 7 node failures before the data becomes
unavailable. If any task fails due to unexpected conditions, TaskTrackers notify the JobTracker about the task
status. JobTracker is responsible for re-executing the failed tasks on some other machine. JobTracker also
considers a task as failed if the assigned TaskTracker does not report the failure in configured timeout interval.
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V. Conclusions And Future Work
The Hadoop MapReduce framework over MDFS demonstrates the ability of providing a Hadoop

MapReduce framework in a tactical cloud where the HDFS file system is optimized to handle neither the
dynamic and resource constrained nature of the tactical cloud, nor the security and reliability requirements of the
domain. The evaluation results show that our system is capable of enabling big data analytics of unstructured
data like media files, text and sensor data in tactical environments.
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