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Abstract:The use of metaheuristics has a growing interest in solving constrained optimization problems due to 

the computational disadvantages of numerical methods. Metaheuristics are a powerful tool in reaching the 

global optimum. In this work, the Average Differential Evolution (ADE) algorithm, which is one of the newly 

proposed metaheuristics, has been adapted to the constrained engineering design problems. The ADE algorithm 

is a population-based approach with a high convergence rate. It uses a mutation operator with collective 

diversity in the production of candidates. The results show the robustness end effectiveness of the proposed 

algorithm compared to state-of-the-art algorithms in literature. 
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I. Introduction 
 Constrained engineering design problems (CEDP) are considered as real-world problems with many 

constraints. Constraints are very important for engineering design problems because they make searching 

difficult and search method ineffective. Many researchers investigate the solution of these problems and offer 

different approaches [1-3]. However, because of the complex and nonlinear characterization of the problems, 

classical optimization techniques may be inadequate to achieve the global optimum. To overcome this, the 

interest in the use of metaheuristics in this area has been increasing in recent years. 

 Metaheuristics such as Genetic algorithm (GA) [4], artificial bee colony (ABC) [5], bat algorithm (BA) 

[6], crow search algorithm (CSA) [7] and particle swarm optimization (PSO) [8] provide remarkable 

performance in solving engineering design problems. Including natural phenomena, these algorithms essentially 

maintain a population of solutions that are evolved through random alterations and selection. The differences 

between these operations lie in the type of alterations used for generating new solutions, and the mechanism 

employed for selecting new members. 

 The ADE algorithm is one of the newly proposed metaheuristics and has been introduced as a search 

method with rapid convergence rate. This metaheuristic, in which new individual production is performed using 

the average value of the solutions in the population, collectively provides the evolution of the candidate solution 

[9]. In this study, the ADE algorithm has been applied to well-known CEDP’s. The obtained results have been 

compared with the results reported in the literature. 

 

II. The ADE Algorithm 
 The ADE algorithm is a newly proposed metaheuristic algorithm based on population [9].This 

metaheuristic, which has a rapid convergence, provides considerable success in solving the system identification 

problems. It has six computational phases, including initialization, evaluation, improvising of new trial solution, 

handling of bound, selection and termination. 

 

2.1 Initialization 
In initialization phase, the algorithm parameters are initialized and the initial population is randomly generated 

within the range of boundaries of variables as follows: 

, ,min ,max ,min*( ) 1,2,... 1,2,...j

i G i i ix x rand x x i NP and j D      (1) 

 

where, x is the set of solution vector, NP is the population size or the number of solution vectors, D is the 

number of variables,
,maxix and 

,minix are the maximum and minimum allowable values for the 
thD variable, 

rand is a random number in the interval [0, 1], and G is the generation number. 
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2.2 Evaluation of solution vectors 
 The fitness values of the solution vectors are determined at this stage. Fitness values actually represent 

the quality of vectors. Therefore, the value of each solution vector in the objective function of the problem is 

taken as the fitness value of that vector. 

 

2.3 Improvising of new trial solution 
 At this phase, the candidate vector for next generation is created. Firstly, the average vector in the 

present generation is computed. This vector is calculated by taking the average of the solution vectors in the 

present population, as in the following: 

,

1

1 NP

G i G

i

A x
NP 

 
 

 (2) 

Here, GA


 shows the average vector of the generation G , NP  shows the solution number in the population,
ix


 is 

the current solution vector, and G shows the current generation.Then, a mutant vector is created by the 

following equation for each solution vector. 

, 1 , ,* [ 1,1]*( )i G best G i G i Gu x rand A x    
  

 (3) 

where, 
, 1i Gu 


is the mutant vector, 

,best Gx


is the best solution vector in generation G , GA


is the average vector in 

generation G , 
,i Gx


is the original solution vector in generation G , is the scaling factor, and [ 1,1]irand  is the 

random number in interval between [-1, 1]. 

 Finally, In order to form the trial vector,
, 1

ˆ
i Gx 

, the mutant vector
, 1i Gu 


is put on a crossover with 

(crossover rate)Cr  possibility together with the original solution vector 
,i Gx


as done in the DE algorithm. Each 

variable belonging to the trial vector is selected with Cr possibility from the mutant vector and with 1 Cr

possibility from the original solution vector.  

 

2.4 Handling of bound violations 

 Constraint violations are checked for candidate solutions produced in the previous stage. If any variable 

of the trial vector is found to be outside the boundaries defined in initialization, then this variable is assigned the 

nearest limit value. 

 

2.5 Selection 
The decision of transferring the candidate solution to the next generation is decided in this process step. As 

expressed in the following equation, the vector with better fitness function is transferred to the next generation. 

   , 1 , 1 ,

, 1

,

ˆ ˆif

otherwise

i G i G i G

i G

i G

x f x f x
x

x

 



  
  
  




  (4) 

where,  , 1
ˆ

i Gf x  and  ,i Gf x


represent the fitness function of 
, 1

ˆ
i Gx 

 and
,i Gx


, respectively. 

 

2.6 Termination 

 The five stages described above are maintained until the termination criteria are met. When the number 

of predefined generations is reached, the computation is stopped and the best vector is considered as the global 

optimum. 

 

III. Results and Discussions 
 In this section, simulation studies based on some well-known constrained engineering design problems 

are carried out for investigating the performance of the proposed ADE algorithm. The selected problems are 

well-known benchmarks studied by various approaches [4, 8, 10-12].For an accurate comparison, ADE has been 

run 30 times independently and it has been taken as 5000FEs  . In all cases, parameters of the ADE are set as 

follows: 25NP  , 0.9Cr   and 2  . 

 

3.1 The design of a tension/compression spring 

 The tension/compression spring structure, shown in Figure 1, is a design problem. This problem 

consists of minimizing the weight  ( )f x of a tension/compression spring subject to constraints on shear stress, 

minimum deflection, and surge frequency. It can be stated as following with three design variables such as the 

wire diameter, 1( )d x  the mean coil diameter, 2( )D x  and the number of active coils 3( )N x [10]. 
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Fig. 1: A tension/compression spring 

 
2

cos 3 2 1( ) ( 2)tf x x x x   (5) 
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

  


  

 (6) 

 The variable regions are limited by
10.05 2x  ,

20.25 1.3x  ,
32 15x  . Further, Arora [10] has 

also provided a solution to this problem using nonlinear programming (NP) technique. Also, Coello [4] has 

solved this problem using a GA-based method. He and Wang [8] have proposed the co-evolutionary PSO for 

solving this problem. In addition, some researchers have used newer improved DE algorithms and other 

metaheuristic algorithms to solve this problem [5-7, 11, 13-18]. 

Table 1 presents statistical results of ADE.And, results of ADE are compared with solutions reported by other 

researchers, as shown in Table 2. From Table 2, it can be seen that the best solution obtained by ADE is better 

than those of the other methods. 

 

Table 1: Statistical results of tension/compression spring problem by ADE. 
Best Mean Worst S. D. 

0.009873 0.009906 0.010164 0.000073 

1( )g x  2( )g x  3( )g x  4( )g x  

-3.43197E-05 -4.80553E-05 -4.860240 -0.717057 

 

 It is observed that the number of coils
3( )N x is not an integer at the optimum design point. This 

problem was solved by methods in literature as a continuous case study. If the problem is assumed as a discrete 

case study, the number of active coils should be integer values [10]. In this case, the problem can be re-

optimized for discrete values. Thus, best solution of ADE is 
cos ( ) 0.00998tf x  at 

1 2 3( 0.050634, 0.389267, 8)x x x   with (
1( ) 6.93044E 05g x    ,

2( ) 1.53117E 04g x    ,
3( ) 4.8665g x   ,

4( ) 0.706733g x   ). 

 

Table 2: Comparison of results for the tension/compression spring problem. 

Methods 
Design parameters 

cos ( )tf x  
1( )d x  2( )D x  3( )N x  

IHS [13] 0.051154 0.349871 12.076432 0.012670 

NP [10]    Continuous 
                 Discrete 

0.051680 
0.051200 

0.356532 
0.345400 

11.313501 
12 

0.012677 
0.012680 

GA [4] 0.051480 0.351661 11.632201 0.012704 

CPSO [8] 0.051728 0.357644 11.244543 0.012674 

IACO [11] 0.051865 0.361500 11.000000 0.012643 

rank-iMDDE [14] 0.051689 0.356717 11.288998 0.012665 

MAL-DE [15] 0.051689 0.356717 11.288955 0.012665 

BA [6] 0.051690 0.356730 11.2885 0.012670 

ABC [5] 0.051749 0.358179 11.203763 0.012665 

WCA [16] 0.051680 0.356522 11.300410 0.012665 

CSA [7] 0.051689 0.3567169 11.289011 0.012665 

IAPSO [17] 0.051685 0.356629 11.294175 0.012665 
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CS [18] 0.051680 0.356522 11.300410 0.012665 

ADE        Continuous 
                 Discrete 

0.050000 
0.050634 

0.374414 
0.389267 

8.548155 
8 

0.009873 

0.009980 

 

3.2 The design of a pressure vessel 

 The pressure vessel design problem consists of minimization of the cost of the pressure vessel as 

shown in Figure 2. The main purpose is to decrease the total cost [19]. There are totally four different design 

variables namely,
sT is the thickness of the shell (

1x ), 
hT is the thickness of the head (

2x ), R is the inner 

radius (
3x ), and L is the length of the cylindrical section of the vessel except head (

4x ). 
sT and

hT show the 

available thickness of rolled steel plates and these parameters are also the definition of integer multiples of 

0.0625 inch in scale. Moreover, R and L  are the continuous parameters in a regular pressure vessel designs. 

The problem can be based on the same explanation using by Coello [19] in below; 
2 2 2

cos 1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84tf x x x x x x x x x x     (7) 

Subject to 

1 1 3

2 2 3

2 3

3 3 4 3

4 4

( ) 0.0193 0

( ) 0.00954 0

4
( ) 1,296,000 0

3

( ) 240 0

g x x x

g x x x

g x x x x

g x x

 

   

   

    

  

 (8) 

The design space is bounded by
11 0.0625 x  ,

2 99 0.0625x   ,
310 x ,

4 200x  . 

 Various approaches such as GA [12], HSA [13], and discrete programming (DP) [3] were applied to 

solve this problem. Also, a detailed mathematical analysis of this problem is provided that proves that 

6,059.714335 is the global minimum [20]. 

Th
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L
Th

R

Ts

R

L

 
Fig. 2: A pressure vessel 

 

 The statistical results of ADE and the comparison of results are presented in Tables 3 and 4, 

respectively. The results show that ADE algorithm reached to global optimum. It is worth mentioning that the 

best objective value obtained by Eskandar et al. [16] is not feasible since design variables 
1x and 

2x are not 

integer multiples of 0.0625. 

 

Table 3: Statistical results of pressure vessel problem by ADE. 
Best Mean Worst S. D. 

6059.714362 6547.574957 10544.421824 1132.581152 

1( )g x  2( )g x  3( )g x  4( )g x  

-0.000000000677 -0.035880829350 -0.005417838693 -63.363402749637 

 

Table 4: Comparison of results for the pressure vessel problem. 

Methods 
Design parameters 

cos ( )tf x
 1( )sT x  2( )hT x  3( )R x  4( )L x  

IHS [13] 1.1250 0.6250 58.2901 43.6926 7,197.7300 

GA [4] 0.8125 0.4375 40.3239 200.00 6,288.7445 

CPSO [8] 0.8125 0.4375 42.0912 176.7465 6,061.0777 

IACO [11] 0.8125 0.4375 42.0983 176.6377 6,059.7258 

meta-GA [12] 1.1250 0.6250 58.1978 44.2930 7,207.4940 

rank-iMDDE [14] 13.0 7.0 42.0984 176.6365 6,059.7143 

MAL-DE [15] 0.8125 0.4375 42.0984 176.6365 6,059.7143 

BA [6] 0.8125 0.4375 42.0984 176.6365 6,059.7143 

ABC [5] 0.8125 0.4375 42.0984 176.6365 6,059.7143 
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WCA [16] 0.7781 0.3846 40.3196 -200.00 5,885.3327 

CSA [7] 0.8125 0.4375 42.098445 176.636598 6,059.7143 

IAPSO [17] 0.8125 0.4375 42.0984 176.6366 6,059.7143 

CS [18] 0.8125 0.4375 42.098445 176.636595 6,059.7143 

DP [3] 1.1250 0.6250 48.9700 106.72 7,980.8940 

ADE 0.8125 0.4375 42.098445 176.636595 6,059.7143 

 

3.3 The design of a welded beam 

 As it can be seen in Figure 3, the welded beam structure is a practical design problem [4]. The 

objective is to carry out the minimum fabrication cost of the welded beam subject into the constraints on 

bending stress, ( ) , shear stress, ( ) , end deflection, ( ) , buckling load, ( )cP , and side constraint. There are 

four design variables:
1( )h x ,

2( )l x ,
3( )t x , and 

4( )b x . The cost function is stated in below: 

 
2

cos 1 2 3 4 2( ) 1.10471 0.04811 (14.0 )tf x x x x x x    (9) 

Subject to 

1 max

2 max

3 1 4

2

4 1 3 4 2

5 1

6 max

7

( ) ( ) 0

( ) ( ) 0

( ) 0

( ) 0.10471 0.04811 (14.0 ) 5.0 0

( ) 0.125 0

( ) ( ) 0

( ) ( ) 0c

g x x

g x x

g x x x

g x x x x x

g x x

g x x

g x P P x

 

 

 

  

  

  

    

  

  

  

 (10) 

 The variable regions are limited by
10.1 2x  ,

20.1 10x  ,
30.1 10x  ,

40.1 2x  .Coello 

[4] and Deb [21] have provided a possible solution to find out the GA based method problems. On the other 

hand, some other researchers have used metaheuristic methods to solve this problem [5-8, 11, 13, 14, 16-18]. 

The statistical results of ADE and the comparison of results are presented in Tables 5 and 6, respectively. 
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6,000P  lb, 14L  in, 
max 0.25  in,

630 10E   psi, 
612 10G   psi,

max 13,600  psi,
max 30,000  psi. 
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Fig. 3: Welded beam structure 
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Table 5: Statistical results of welded beam problem by ADE. 
Best Mean Worst S. D. 

1.699214 1.701265 1.727508 0.005645 

1( )g x  
2( )g x  

3( )g x  
4( )g x  

-16.25887716834 -0.210643521565 -0.004255039403 -3.445807411616 

5( )g x  
6( )g x  

7( )g x   

-0.076500000000 -0.054001376204 -1.992842957436  

 

Table 6:Comparison of results for the welded beam problem. 

Methods 
Design parameters 

cos ( )tf x
 

1( )h x  
2( )l x  

3( )t x  
4( )b x  

IHS [13] 0.2057 3.4704 9.0366 0.2057 1.7248 

GA [4] 0.2088 3.4205 8.9975 0.2100 1.7483 

CPSO [8] 0.2023 3.5442 9.0482 0.2057 1.7280 

IACO [11] 0.2057 3.4711 9.0366 0.2057 1.7249 

rank-iMDDE [14] 0.2057 3.4704 9.0366 0.2057 1.7248 

BA [6] 0.2015 3.562 9.0414 0.2057 1.7312 

ABC [5] 0.2057 3.4704 9.0366 0.2057 1.7248 

WCA [16] 0.205728 3.470522 9.03662 0.205729 1.724856 

CSA [7] 0.2057296 3.470488 9.036623 0.205729 1.724852 

IAPSO [17] 0.2057296 3.470488 9.036623 0.205729 1.724852 

CS [18] 0.205728 3.470522 9.036620 0.205729 1.724856 

GA [21] 0.2489 6.1730 8.1789 0.2533 2.4328 

ADE 0.2015 3.3280 9.036098 0.205755 1.699214 

 

As it can be seen in Table 6, the best solution found by the ADE algorithm is better than the other solutions 

utilizing by other techniques. 

 

IV. Conclusions 
 Optimization is a significant issue in the design process of engineering optimization problems. An 

optimizer aims at achieving the optimal solution for design problems that are encountered in several areas. Over 

the last two decades, metaheuristic algorithms have been successfully applied as an optimum utilizerfor solving 

complicated real-world optimization problems. These algorithms have carried out conventional numerical 

methods and also provide the optimal solution.  Thus, researchers have focused on improving these 

metaheuristic algorithms. 

 In this study, an effectivemetaheuristic algorithm(ADE) has been successfully applied to design 

problems.A comparative study has been carried out to show the effectiveness of the ADE over other methods. 

The results indicate that the proposed method provides successful results in general. The proposed method is 

promising for future works especially for the solution of complex real-world problems including optimum 

design. 
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