
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 22, Issue 4, Ser. I (Jul. – Aug. 2020), PP 42-51

 www.iosrjournals.org

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 42 | Page

Hybrid Password Authentication System

Harish Manikandan Balaji
1
, Abisek K.S

2
, Dharmesh Gopinath

3

1,2,3
(Computer Science and Engineering, Anna University, India)

Abstract:
The storage and handling of passwords is a vital part of security systems. We introduce a novel approach for

password authentication to store and handle passwords securely, which could be seamlessly, merged with

existing security systems. This approach protects the genuine plaintext password from being discovered by a

malicious actor even if the database storing the passwords suffers a data breach. The data breach could be a

result of an unpatched or zero-day vulnerability. A plaintext password is hashed using a hash function. The hash

is then split into two parts. One part is used to create a series of patterns (or) Anti-passwords involving the use

of an Anti-password algorithm, which are then stored securely in a database. The other part is encrypted using

AES algorithm. The encryption and the patterns together create two layers of security making it harder to crack

through and access the passwords. The analysis and complexity of the system shows that the encrypted

passwords can resist lookup attacks and provide even stronger protection against dictionary attacks. It should

also be mentioned that the system combines the cryptographic hash function, patterns, and encryption, without

requiring anything more than just the password.

Key Word: Advanced Encryption Standard (AES); Anti-password; Negative Database (NDB); Hybrid

password authentication system (HPAS).

--- ----------

Date of Submission: 05-07-2020 Date of Acceptance: 21-07-2020

-- ---------------

I. Introduction
With the evolution of the internet and its far-reaching capabilities a variety of online services have

emerged. In such services passwords are the most used method of authentication. Since passwords are a vital

part of accessing various services the security of those passwords is of great importance to the industries and

academies. Despite all the effort put into the security of passwords they are cracked due to a variety of reasons.

Most passwords are compromised due to user‘s negligence and others due to the system itself being

compromised [13]. In addition, the problems in the systems may cause passwords to be compromised. It is very

challenging to get passwords from high security systems. On the one hand, stealing authentication data tables

[3] containing usernames and passwords in high security systems is difficult and carrying out guessing attacks

involves limited login attempts [15]. Weak points in the system are always being discovered and most of the

systems cannot be updated to resist attacks this enables attackers to exploit and to gain access.

After obtaining authentication data tables from vulnerable systems threat actors can execute offline

attacks. In the data tables the passwords are usually in the form of hashes. As computing power and storage

resources are getting more sophisticated hashed passwords cannot withstand precomputation attacks such as

rainbow table attack and lookup table attacks [2] [12]. Large scale password guessing attacks can be used to

crack a lot of passwords [11]. Some powerful attack tools [6] like hashcat and John the Ripper(JtR) provide a

spread of functions like multiple hash algorithms, attack models, operating systems, and platform. It raises a

better demand for secure password Storage.

One of the major reasons for the success of lookup table attack is, the corresponding hashed password

is decided for a given plain password. Therefore, the lookup table might be quickly constructed, and the size of

the lookup table is sufficiently large. This enables a high success rate of cracking hashed passwords [5]. Normal

password protection schemes include password hashing, salted password and key stretching. Among these

schemes, hashed password is usually eliminated for its susceptibility towards precomputation attacks [8]. Salted

passwords can resist precomputation attacks but it would introduce an extra element and it cannot resist

dictionary attacks. The key stretching schemes provide stronger password protection than salted password but

configuring parameters requires lot of effort by the programmers.

A password protection system called Hybrid Password authentication system (HPAS) is proposed, it

uses a combination of hashing and encryption algorithms along with the proposed anti-password algorithm. The

anti-password algorithm converts a password to a hash using hash functions; it is converted to a series of

patterns. The strength of the algorithm depends on the confidential key which is the hash of the password and is

nearly unique for every user and need not be specially generated. Subsequently the HPAS enables symmetric

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 43 | Page

encryption to be used for password protection. The patterns are saved in a database called negative database

(NDB) [1] or Anti-password database.

Fig.1Efficiency of Various Hashing Algorithms

II. Related Works
Fernando Esponda proposed an algorithm for creating and maintaining a negative database [1].

Negative databases should be considered as logical containers of strings. The DB is considered to remain

defined over the {0, 1} alphabet. The strings stored in Online Negative Databases [16] implement some partial

matching rules, such as, removing or inserting. A single string changes the definition of Database according to

the specifics of that match rule. The proposed algorithm protects passwords in an authentication data table [18]

[19] [20]. The system designer must first select a cryptographic hash function and a symmetric key algorithm.

Typical Password Protection Plans:

Hashed Password

To securely store passwords a standard method is to hash passwords employing a cryptographic

hashing algorithm. It is mathematically impossible to directly recover plain passwords from hashed passwords.

The cryptographic hash function quickly converts data of variable size to a sequence of fixed-size bits. Various

hash functions available are shown in Table 1 and the output size for each hash function is also mentioned [17].

The hashed passwords are unable to prevent lookup table attack. The rainbow table attack is very effective to

crack hashed passwords [11]. The effectiveness of various hashing algorithms is shown in fig. 1.

Password Salting

To resist precomputation attacks the foremost common scheme is salted password. During this scheme,

the concatenation of a clear password and a random data called salt is hashed using cryptographic hashing

algorithm. The salt is generated randomly. It ensures the hash values of equivalent plain passwords are nearly

always different. The greater the dimension of the salt the higher the password security is. Passwords that are

salted are still weak against dictionary attacks [4] [5] [6].

Table no 1:Cryptographic Hash Functions

Anti-password Database

In the database the complement of a positive database is compressed and stored. It is denoted as DB. U

= {0, 1} and there are many n-bit values where ‗n‘ denotes the universal set of n-bit sequences and x ∈ U

indicates an n-bit sequence. DB = {x1, x2,…, xm} indicates a positive database that contains m entries. The

Anti-Password DB [9] stores the compression implemented using the wildcard ‗*‘ of U − DB [14]. Every entry

in the database contains three symbols: ‗0‘, ‗1‘, and ‗*‘. The symbol ‗0‘ only match the bit 0, and therefore the

symbol ‗1‘ only match the bit 1. The symbol ‗*‘ can match either the bit 0 or 1 [10]. Every entry in the database

consists of two sorts of positions, specified positions, and unspecified positions. The positions consisting of the

Hash function Number of bits

MD5 128 bits

BLAKE-256 256 bits

RIPEMD-320 320 bits

SHA-512 512 bits

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 44 | Page

symbols ‗0‘ or ‗1‘ are called specified positions. The positions having the symbol ‗*‘ are called unspecified

positions.

Fig.2Account Registration Phase

III. Proposed Framework
The proposed framework includes two stages, the registration stage and authentication stage. When

adopting our framework to protect passwords in an anti-password database the system designer must first select

a cryptographic hash function and a symmetric-key algorithm. The condition to be satisfied is that the key size

for the symmetric-key algorithm should be minimum 128 bits. For convenience some matches of cryptographic

hash functions are given in Table 1. In addition, hash functions that are not present in Table 1 can be used in the

anti-password, this adequately indicates the flexibility of our framework. The proposed HPAS is based on the

anti-password algorithm hence, for better understanding; the data flow diagram of the anti-password is shown in

fig. 2.

User Registration Phase

The steps involved in the user registration phase are:

Step-1: On the client side, a user enters their username and password. The password is converted into a hash

with the selected hashing algorithm and is transmitted to the server through a secure tunnel along with the

username.

Step-2: If the received username exists in the database, ―The username already exists!‖ Message is returned, this

implies that the server has rejected the registration request, and the registration phase is terminated; otherwise,

go to Step-3.

Step-3: The received hashed password is split into 2 equal parts: hash-1 and hash-2. Hash-1 is encrypted using

AES algorithm with the key value as hash-2 and is stored in the Anti-password database.

Step-4: The hash-2 part is converted into a binary value ‗b‘. It is then converted to anti-passwords using the

Anti-password algorithm. This algorithm takes in all combinations of binary values of the length same as ‗b‘ as

inputs. The values ‗b‘ and binary equivalent of 1 and 0 are excluded as inputs.

Step-5: The anti-passwords are a set of patterns. Each pattern has the characters ‗*‘, ‗1‘, ‗0‘ as its values. If

required, the admin of the server can use multi-iteration

encryption to enhance the protection of the passwords stored in the server.

Step-6: The username and the resulting anti-password are stored in the Negative database and ―Registration

success‖ is returned, implying that the server has accepted the registration request.

Password Hashing

Hash functions are any mathematical function used for converting data of variable size to a fixed size

value. A hash functions output is called a hash. Hans Peter Luhn was the first person to have used the concept of

hash. The result of the hash function is mathematically irreversible, and the plain text cannot be retrieved from

the hash.

Hashing

Database

Pattern Generator

Users

Plain Password

 (2n)-1 Values

Encrypt Hash-2

with Key

Encode into

Binary Value

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 45 | Page

Binary Value Generation

The hashed password is split into two parts and the second part is encoded into a binary value. The

encoded value‘s length is 64 characters. In the proposed work, we split hash-2 value consisting of 64 characters

into 16 equal parts each of length four. We randomly pick a value from each of the 16 parts and it is

dynamically generated for each user. A sample conversion is shown in Table 2.

Table no 2:Binary Encoding Algorithm-Sample
Position 132432

Binary 100110001010010110000101

Split 1001|1000|1010|0101|1000|0101

Final 100001

The total number of binary values to be given as input to the Anti-password algorithm can be established, using

the eqn. (1)

lim0→6 2
2𝑛 (1)

2
n
 in eqn. (1) gives the length of the binary value. The value of ‗n‘ depends on the complexity of the algorithm

required by the developer; the complexity will increase with the increase in the size of ‗n‘. The binary generation

for 2 variables is shown in Table 3.

Table no 3:Binary Generation for Two Variables
A B Fn1 Fn2 Fn3 Fn4 Fn5 Fn6 Fn7 Fn8

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

A B Fn9
Fn1

0

Fn1

1

Fn1

2

Fn1

3

Fn1

4

Fn1

5

Fn1

6

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

AES Encryption

It is a symmetric cipher used to guard confidential data and used in many technologies globally to

encrypt private data. The algorithm specifies variety of transfigurations to be done on the data, saved in an array.

The primary step of the cipher is to place the information into an array. After which, the cipher transfigurations

are repeated over variety of encryption rounds. First round of algorithm is represented in fig. 3.

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 46 | Page

Fig.3AES Encryption [Round 1]

The number of iterations is decided by the key length, with ten iterations for 128-bit keys, twelve for

192-bit keys and fourteen for 256-bit keys. We use hash to encrypt the plaintext passwords. The initial hashed

password is split into two equal parts and by using the first part as key, the second part is encrypted. The AES

algorithm is a strong and effective algorithm available.

Pattern Generator

The Pattern Generator takes (2n)-1 binary values as its input and produces a set of values or patterns, with each

pattern comprising of the characters ‗*‘, ‗1‘, ‘0‘. In Table 4 a sample pattern generation is shown. The user‘s

hash-2 is binary encoded to 001. All the values in the second column of Table 4 are values excluding ―001‖,

every value in it except ―011‖ will match with at least one of the patterns in column 3. The ‗*‘ can either be

replaced with ‗0‘ or ‗1‘.

For instance, 000 will match with *0* and **0, but the value 011 does not match with any of the patterns. The

binary value not having any match with the patterns stored for a user is the part of the correct password.

Table no 4:Pattern Generation

Password Authentication

Based on client and server interaction the password authentication phase is classified as five steps.

Step-1: On the client side, a user enters their username and password. Then, the username and hashed password

are transferred through a protected channel to the server.

Step-2: If the received username does not exist in the database, ―Incorrect username or password‖ message is

returned, which means that the server has rejected the authentication request, and the authentication phase is

terminated, otherwise go to Step-3.

Step-3: The hash value received is split into two parts: hash-1 and hash-2. Retrieve the stored anti-passwords in

the database shown in Table 4 for the corresponding user. Convert hash-2 value into a binary equivalent and

Binary Value B
Pattern Generator Input

Values

Output Values (Or)

Patterns

011

000

001

010

100

101

110

111

0

1**

**0

Add Round Key

Sub Bytes

Shift Rows

Shift Rows

Mix Columns

Add Round Key

 Cipher Text

Key 0(128 Bits)

Key 0(128 Bits)

Plain Text

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 47 | Page

compare bit values to the anti-passwords. If no pattern is matched with the binary value, one part of the

password is authenticated.

Step-4: Retrieve the encrypted portion of the password from the database and decrypt using hash-2 value as the

key. If the decrypted value matches with the hash-1 value, the second portion of the password is authenticated.

Step-5: If the hash value of the received password is not the solution of the anti-password, ―Incorrect username

or password‖ message is returned. It can be inferred that; the server has denied the authentication request. As a

result, the authentication is terminated. Otherwise, ―Authentication success‖ message is returned, it can be

understood that the server has approved the request.

Anti-passwords

Anti-passwords are obtained through the steps in fig. 2. Firstly, the received plain text password from

the client is converted to hash using a hash function. Next, the hash is transformed into an anti-password using

the Anti-password algorithm. Thus, the anti-passwords are obtained. In the above processing, each component,

such as cryptographic hash function, symmetric-key algorithm, and the database generation algorithm is

indispensable.

The value space of anti-passwords for a hashed password is sufficient to resist precomputation attacks.

The database generation is straightforward and efficient. Algorithm 1 elaborates how patterns are compared with

the binary value. Based on random and inverse permutations, randomness is introduced to implement reversible

one-to-many mappings.

Moreover, multi-iteration encryption could be introduced to enhance anti-passwords strength, which is

based on the implementation of key stretching technique. The greater the number of encryptions is the more

secure the anti-passwords. However, the authentication speed decreases. The system designer must select a

proper encryptions algorithm to balance the speed of authentication.

IV. Analysis of Attack Models
There are several types of attack models commonly used by attackers to compromise password systems

[7] and databases. Using these sophisticated attacks, combined with the available technology, attackers can

compromise passwords of various services both online and offline effectively.

Attack Models

Upon acquiring an authentication data table, attackers may use brute force attacks, lookup table attacks,

dictionary attacks to crack the passwords stored within the table. Depending upon the precomputation technique

the attacks can be split up into two different categories. The first category includes rainbow table attack, lookup

table attack and the second category comprise of dictionary attack, advanced dictionary attack, reverse lookup

table attack and brute force attack.

Algorithm 1: To Check 2 Terms Differ by One Bit

Input:2 binary values b1, b2 (E.g. 1010, 1000)

Output:The value 10*0 is returned

Pattern_match(a, b)

 1. Maximum LENGTH (bin)

 2. for szero to Maximum incrementally do

 3. bin "0" + bin

 4. end for

 5. return bin

 6. flag 0

 7. long LENGTH(a)

 8. for s zero tolong incrementally do

 9. if a[s] ≠ b[s]

 10. flag flag + 1

 11. end if

 12. end for

 13. return flag 1

In the first category, due to the precomputation technique, both lookup table attack and rainbow table

attack are effective methods to quickly crack many passwords. Therefore, the latter could attempt more possible

passwords for its space-time trade-off. In the second category, all four attacks simply attempt every possible

password within the password list. Moreover, the difference between those four attacks is the construction of the

password list. The password list in the brute force attack is the list of all combinations of characters in a given

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 48 | Page

character set. Without loss of generality, we select lookup table attack from the primary category and dictionary

attack from the second category to analyze the capability of our scheme. The details of the two attacks are

described in the following section.

Lookup Table Attack

When completing a lookup table attack, an attacker first prepares a password list that mostly constitutes

of frequently-used passwords, concatenations of words in a vocabulary list and so on. Then, a lookup table is

made, where the keys are encrypted passwords, converted from elements within the password list by an

encryption algorithm. Once the lookup table is prepared, the attacker performs the attack. Finally, for each

encrypted password within the authentication data table, the adversary searches for the initial plain password by

matching the encrypted password and therefore the keys within the lookup table. The adversary could shorten

the search time by adopting binary search algorithm or the information structure of hash table.

Dictionary Attack

When executing a dictionary attack, the adversary first steals the authentication data table. Next, they

prepare a password list for the attack. Finally, for each encrypted password in the authentication data table, the

attacker converts each element within the password list to cipher-text. It is understood that the attacker knows

the encryption algorithm utilized in the authentication data table. Then, it determines whether the cipher-text

matches with the encrypted password. If any match is established, the adversary immediately obtains the initial

plaintext password.

Attack Complexity Analysis of Attack Models

The attack complexity of the encrypted anti passwords under lookup table and dictionary attack is analyzed.

Lookup Table Attack Analysis

There are a lot of corresponding anti-passwords for a given plaintext password. If the attacker intends

to crack the proposed algorithm, they must compute all the possible anti-passwords for every element in the

password list. Thus, the number of possible anti-passwords is computed. The permutation causes the diversity

among the anti-passwords. Hence, the number of anti-passwords that are converted from a plaintext password

are identical to the number of permutations. The magnitude of the lookup table increases rapidly with the

magnitude of the password hash. Usually magnitude of the hash is usually 128, 256, or 512 bits. The anti-

password algorithm can resist lookup table attacks.

Dictionary Attack Analysis

To crack anti-passwords using dictionary attack, a password list is created based upon the values

obtained from the authentication table. First a set of passwords in a list are converted to password hashes. The

anti-passwords are decrypted where the key is the hashed password, to determine whether the hashed password

is the solution of the negative password using certain algorithms and the success indicates that the attackers

cracked this anti-password.

Attack Complexity Analysis of Algorithm

To crack anti-passwords using dictionary attack, a password list is created based upon the values

obtained from the authentication table. First a set of passwords in a list are converted to password hashes. The

anti-passwords are decrypted where the key is the hashed password, to determine whether the hashed password

is the solution of the negative password using certain algorithms and the success indicates that the attackers

cracked this anti-password.

Attack Complexity Analysis of Algorithm

In order to further highlight the benefits of our scheme, we analyze and compare the attack complexity with the

existing algorithms under lookup table attack and dictionary attack.

Hashed Passwords

Hashed password is a widely used scheme to guard passwords in an authentication data table. Hashed passwords

are often calculated using eqn. (2).

Hash(P) = HASH (Pplain) (2)

Where HASH is a cryptographic hash function like SHA-256. Pplain is a plain password, and Hash(P) is the

hash value of Pplain. Hashed passwords might be easily cracked by precomputation attacks. For a given plain

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 49 | Page

password the corresponding hashed password is decided. Consequently, attackers could precompute the hash

values of all elements within the password list; the hashed passwords constitute the keys of the lookup table and

the records are the corresponding elements within the password list. After constructing the lookup table, a linear

search algorithm is adopted to lookup hashed passwords within the table, the time complexity of cracking

passwords is O (Nd∗ Np ∗Tm_hash). Therefore, hashed passwords are vulnerable under lookup table attack.

Salted Passwords

In order to compensate for the weaknesses of hashed passwords and resist lookup table attacks, salted

passwords are used to improve the security. Salt is basically extra elements added to a password to make it more

secure and difficult to crack. There is no need to have any specific order and elements can be random. The

parameter of the cryptographic hash function is the concatenation of a plaintext password and salt. The size of

the salt is usually large and is generated at random. Furthermore, salted passwords vary based on the salt value

used.

P → Plaintext Password
S → Salt

HPS= HASH (P||S) (3)
In eqn. (3), ―||‖ is a concatenation operator and ‗HPs‘ is the salted password. The salt can be on the left side of

the plaintext password. When the dimensions of the salt are sufficiently large the dimensions of the lookup table

become too big to precompute and needs plenty of storage resources. The salted passwords can resist lookup

table attack but cannot resist dictionary attacks.

Fig.4Analysis of Typical Password Length

Anti-Passwords

The proposed Anti-password algorithm can resist a lot of precomputed attacks. When a brute force

attack was performed on the AES-128 and the anti-password algorithms, it was found that the attack on the

proposed algorithm takes 4 times the time to break the password than on AES-128 algorithm. The comparative

analysis is shown in Table 5. We are considering two instances to break the password:

1) Permutations of only 26 characters are allowed to create passwords.

2) Permutation of only 65 characters are allowed. The attack complexities of the two algorithms are represented

in fig. 5 and fig. 6. The typical password length is analyzed in fig. 4.

Table no 5: Attack Complexity Analysis of AES-128 and Proposed Algorithm

Length

(no. of

characters)

I

Permitted

Characters (26)

II

Permitted

Characters

(65)

AES-128 Algorithm Proposed Algorithm

Time to Break I

(Years)

Time to Break

II

(Years)

Time to Break

 I

(Years)

Time to Break
II

(Years)

5 11881376 1160290625
3.6125162 X 10-

5
0.0027379070 0.00014450065 0.010951628

6 308915776 75418890625
3.6125162 X 10-

0.17796396 0.0039357413 0.71185582

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 50 | Page

Fig.5Attack Complexity Analysis of AES 128-bit Algorithm

Fig.6Attack Complexity Analysis of Anti-password Algorithm

V. Advantages
The Encrypted anti-passwords only need to determine a pair of cryptographic hash function and

symmetric-key algorithm without the need for extra elements. It is a programmer-friendly algorithm. Even if the

database is attacked by attackers the passwords themselves are safe from perusal due to anti-passwords. The

complexity of cracking the encrypted anti-password system gradually increases with the increase in size of the

binary value. The size of the binary value can be decided by the developer.

VI. Conclusion
Password systems are an essential security feature required in modern technology to protect the user‘s

privacy. Also, it prevents the ever-rising data and related services from being compromised by malicious

hackers and system vulnerabilities. The compromise of passwords can lead to the loss of various resources and

vital information and in severe cases can impact financial and asset stability.The proposed Hybrid password

authentication system (HPAS) is aimed at better securing passwords. After analysis, we have found that the

Anti-passwords can protect against lookup table attacks, dictionary attacks and other precomputed attacks. Even

under the compromise of the database, the passwords themselves are protected and not compromised. In time,

the Anti-passwords will be studied and further improved. Also, the time complexity can be improved by

increasing difficulty of cracking systems. Machine Learning techniques can be considered to strengthen the

current methodology. It shall prevent malicious actors from compromising a user‘s password through

precomputed attacks and blocks the attacker.

5

7 8031810176
49022278906

25
0.024641163 11 0.10130256 44

8 208827064576 31864481289
0625

0.65983559 692 2.6393424 2768

9

5429503678976

20711912837

890624
17 42000 68 168,000

Hybrid Password Authentication System

DOI: 10.9790/0661-2204014251 www.iosrjournals.org 51 | Page

References
[1]. Fernando Esponda, ―Everything that is not important: Negative databases‖, IEEE Computational Intelligence Magazine, vol. 3, no.

2, pp. 60-63, 2008.

[2]. Emin İslam Tatl, ―Cracking More Password Hashes with Patterns‖, IEEE Transactions on Information Forensics and Security,

vol.10, no. 8, pp. 1656-1665, 2015.
[3]. Hung-Min Sun, Yao-Hsin Chen and Yue-Hsun Lin, ―oPass: A User Authentication Protocol Resistant to Password Stealing and

Password Reuse Attacks‖, IEEE Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 651-663, 2012.

[4]. Liang and J, Lai, X, ―Improved Collision Attack on Hash Function MD5‖, Journal of Computer Science & Technology vol. 22, pp.
79–87, 2007.

[5]. Chao Gong and Brandon Behar, ―Understanding Password Security through Password Cracking‖, Journal of Computing Sciences in

Colleges, Evansville, United States, vol. 33, no. 5 pp.81-87, 2018.
[6]. Shiva Houshmand, Sudhir Aggarwal and Randy Flood, ―Next Gen PCFG Password Cracking‖, IEEE Transactions on Information

Forensics and Security, vol.10, no. 8, pp. 1776-1791, 2015.

[7]. Ignacio Sanchez, IwenCoisel and Javier Galbally, ―A New Multimodal Approach for Password Strength Estimation—Part II:
Experimental Evaluation‖, IEEE Transactions on Information Forensics and Security, vol.12, no. 12, pp. 2845-2860, 2017

[8]. Hee Jung Lee, Taekyoung Kwon and Young-Ho Park, ―Security Analysis and Improvement of the Efficient Password-Based

Authentication Protocol‖, IEEE…… Communications Letters, vol. 9, no. 1, pp. 93-95, 2005.
[9]. Danezis G et al., ―Efficient Negative Databases from Cryptographic Hash Functions‖, Information Security Conference, Valparaiso,

Chile, vol. 4779, pp. 423–436, 2007.

[10]. Freedman, M.J, Nissim, K and Pinkas, ―Efficient Private Matching and Set Intersection‖, Advances in Cryptology, Eurocrypt,
Springer, Berlin., vol. 3027, pp. 1–19, 2004.

[11]. Mansour Alsaleh, Mohammad Mannan and Paul C. van Oorschot, ―Revisiting Defences against Large-Scale Online Password

Guessing Attacks‖, IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1, pp. 128-141, 2012.
[12]. Ari Juels and Thomas Ristenpart, ―Honey Encryption: Encryption beyond the Brute-Force Barrier‖, IEEE Security & Privacy,

vol. 12, no. 4, pp. 59-62, 2014.

[13]. K. M. Renuka, SaruKumari, Dongning Zhao and Li, ―Design of a Secure Password-Based Authentication Scheme for M2M
Networks in IoT Enabled Cyber-Physical Systems‖, IEEE Access, vol. 7, pp. 51014 – 51027, 2019.

[14]. KanishkaBajpayee, Surya Kant, Bhaskar Pant, Ankur Chaudhary and Sharma S.K, ―Mining Frequent Itemset Using Quine–

McCluskey Algorithm‖, Advances in Intelligent Systems and Computing, Springer, vol. 437, pp. 763-769, 2016.
[15]. J. Nam et al., ―An Off-Line Dictionary Attack on a Simple Three-Party Key Exchange Protocol‖, IEEE Communications Letters,

vol.13, no. 3, pp. 205-207, 2009.

[16]. Esponda, F., Trias, E., Ackley, E and Forrest, S, ―A Relational Algebra for Negative Databases‖, International Journal of
Information Security, University of New Mexico, vol.8, pp. 331-345, 2007.

[17]. D. R. Ignatius Moses Setiadi et al., ―A Comparative Study MD5 and SHA1 Algorithms to Encrypt REST API Authentication on

Mobile-based Application‖, International Conference on Information and Communications Technology (ICOIACT), Yogyakarta,
Indonesia, pp. 206-211, 2019.

[18]. Esponda F, Forrest S and Helman P, ―Protecting Data Privacy Through Hard-To-Reverse Negative Databases‖, International

Journal of Information Security, vol.6, no.6, pp. 403-415, 2007.

[19]. Abdulmotaleb El Saddik, Fawaz A. and Alsulaiman, ―Three-Dimensional Password for More Secure Authentication‖, IEEE

Transactions on Instrumentation and Measurement, vol. 57, no. 9, pp. 1929-1938, 2008.

[20]. Hugo Krawczyk, MalihehShirvanian, NiteshSaxena, and Stanislaw Jarecki, ―Building and Studying a Password Store that Perfectly
Hides Passwords from Itself‖, IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 5, pp. 770-782, 2019.

Harish Manikandan Balaji, et. al. ―Hybrid Password Authentication System.‖ IOSR Journal of

Computer Engineering (IOSR-JCE), 22(4), 2020, pp. 42-51.

