
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 1, Ser. 1 (Jan. – Feb. 2025), PP 76-82

www.iosrjournals.org

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 76 | Page

The Impact of AI-Generated Code on Software Quality and

Developer Productivity

Anbarasu Arivoli
Email: anbarasuarivoli@gmail.com

Company: Target, Minneapolis, MN

Abstract: Artificial intelligence has changed how we write code. AI-based code generation tools now help

developers work faster. These tools, such as GitHub Copilot, OpenAI Codex, ChatGPT 4.5, Claude, and DeepSeek

R1, generate code by learning from millions of examples. They improve productivity and reduce repetitive tasks.

However, their impact on software quality varies. Some AI-generated code is clean and efficient, while other

outputs need human refinement. This paper investigates how AI-based code generation tools affect software

quality and developer productivity. It compares AI-generated code with human-written code. It also examines

productivity metrics and how developers interact with these tools. The study relies on research data and real-

world examples. It stays objective and technical. In short, this article offers a detailed, research-intensive

overview of the what, how, and results of using AI for coding.

Keywords: AI-generated code, software quality, developer productivity, GitHub Copilot, ChatGPT 4.5, OpenAI

Codex, Claude, DeepSeek R1, code generation tools, developer trust, technical analysis

I. Introduction
In recent years, artificial intelligence has transformed the coding world. AI tools now assist developers

by generating code from natural language prompts. These models use deep learning and vast training data. They

gain insights by analyzing millions of lines of code. As a result, they can produce working code quickly. Moreover,

they help reduce routine work and free developers to focus on complex tasks.

Many companies now use AI-based code generators. GitHub Copilot and OpenAI Codex were among

the first to be widely adopted. Later, models like ChatGPT 4.5, Claude, and DeepSeek R1 entered the scene. Each

model has its strengths and weaknesses. For example, ChatGPT 4.5 often generates code with high readability,

while DeepSeek R1 shows promise in advanced reasoning and mathematical tasks. Furthermore, some tools

emphasize speed, and others offer more detailed problem-solving.

Research shows that developers using AI coding assistants can complete tasks 20% to 45% faster than

traditional methods. Studies also indicate that junior developers tend to benefit the most from these tools. At the

same time, quality remains a concern. While AI-generated code can be efficient, it sometimes lacks the nuanced

understanding of experienced human developers. Thus, developers must review and refine AI outputs.[1]

Additionally, the integration of these tools into development workflows has reshaped the software life

cycle. AI models now work alongside version control systems and integrated development environments (IDEs)

to help maintain a consistent codebase. They offer context awareness through vectorization techniques that search

large code repositories for relevant patterns. Developers now benefit from faster prototyping and debugging.

However, they still need to verify that the generated code meets the project’s architectural standards and quality

benchmarks. [2]

These rapid changes have sparked much discussion. Developers now debate the best models and

workflows. They weigh the advantages of speed against potential risks to code quality. In the following sections,

this article will delve deeper into the specifics of AI in code generation, comparisons with human-written code,

productivity metrics, and developer trust.

II. Literature Review
The integration of AI into software development has garnered significant scholarly attention in recent

years. Deniz et al. [1] show that generative AI tools are transforming developer productivity by accelerating code

commits and reducing repetitive tasks. Complementing this view, Soni et al. [2] detail best practices for integrating

AI into the software development life cycle, offering technical guidelines and impact analysis that help bridge the

gap between traditional coding practices and modern automated approaches.

Research also highlights concerns regarding the future role of junior developers. Pantin [3] argues that

although AI-generated code can speed up routine tasks, it may hinder the learning curve for less experienced

developers by limiting their exposure to essential debugging processes. In parallel, literature on automatic

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 77 | Page

algorithm generation [4] illustrates that when handling complex tasks, AI may insert redundant checks or opt for

non-optimal algorithms, thus challenging the balance between efficiency and code quality.

Trust in AI-generated code remains a critical area of investigation. Brown et al. [5] examine factors that influence

trust in AI code completion, noting that consistency and transparency are vital for developer acceptance. Afroogh

et al. [6] further explore the progress and persistent challenges in building trust in AI systems, emphasizing the

need for clear explanations and robust error handling. Resources like those from IBM [7] serve to demystify AI

code-generation software, thereby enhancing developers’ confidence in these emerging tools.

A comparative analysis between AI-generated and human-written code is crucial to understanding both

the benefits and limitations of these systems. A preliminary study [8] indicates that while AI can rapidly generate

functional code snippets, human-written code often includes richer context, error checking, and commentary that

enhance maintainability. Shah [9] discusses the rise of AI agents in enterprise software development, suggesting

that the future will increasingly rely on these systems to assist developers. However, human oversight remains

indispensable to ensure that critical business logic and complex design considerations are properly addressed.

III. Problem Statement
AI-generated code introduces challenges that affect both the quality of software and the productivity of developers

[2] [3]. The core problem lies in balancing the speed of code generation with the reliability and maintainability of

the resulting code. AI tools can produce code quickly, but the outputs sometimes lack consistency or context. This

disparity raises issues for integration into large codebases and places an extra burden on developers who must

verify and refine the generated code.

3.1. Inconsistent Code Quality and Maintainability

One major problem is the inconsistency in code quality. AI models generate code based on patterns they have

learned, yet they often produce solutions that vary in quality [3]. For instance, consider the simple Python function

generated by an AI tool:

Figure 1: AI Generated code

This code is clear and concise. However, when the AI tackles more complex tasks, it may insert redundant

checks or use non-optimal algorithms [2] [5]. The generated code can have unnecessary nested conditions or

duplicate logic that increases technical debt. Moreover, the code may not adhere to established design patterns,

making it harder to maintain. Developers must refactor and test the outputs to ensure they integrate well with the

rest of the system. Thus, although AI speeds up code production, it introduces variability that undermines long-

term maintainability [3].

3.2. Integration Challenges in Legacy Codebases

Another problem is integrating AI-generated code into existing legacy systems. Modern AI tools often

generate code in isolation, without the full context of an established codebase. Legacy systems usually have

specific architectural constraints and coding conventions that the AI might overlook. For example, an AI might

generate a new module that does not follow the dependency injection pattern used in the existing system. [3]

The code may work independently but can break the overall system when merged. In these cases, developers must

manually align the new code with the legacy architecture. This process demands additional time and increases the

risk of introducing bugs during integration, as the AI-generated code might not seamlessly interface with other

components. [2] [4]

3.3. Developer Trust and Oversight

A further challenge is establishing trust in AI-generated code [5]. Developers need to verify that the code

compiles and performs the intended function reliably. Although AI tools offer a significant boost in productivity,

they cannot fully replace the human ability to understand the deeper context of a problem.

Developers must scrutinize AI outputs, often line by line, to ensure correctness. For example, the AI

might generate a function that appears efficient but omits important error handling. Developers then have to insert

additional code to manage exceptions or to validate inputs. This oversight increases the cognitive load and reduces

the net productivity gains promised by AI tools. [3]

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 78 | Page

Trust is built gradually, and until AI can guarantee context-aware decisions, human intervention remains crucial.

[6]

3.4. Productivity Measurement and Overhead

Measuring the productivity gains from AI coding tools also presents technical challenges. Although studies report

improvements ranging from 20% to 45%, these figures often do not account for the additional time developers

spend on reviewing and debugging AI-generated code.

For instance, a developer might complete a coding task faster with AI assistance but later invest extra time to

understand the AI’s internal logic and correct any flaws. This overhead can offset some of the initial speed

improvements. Moreover, integrating these tools into the development workflow requires a strong setup with

version control and continuous integration pipelines.

The extra steps needed to ensure compatibility and maintain quality further complicate productivity

measurements. In technical terms, while the raw code generation rate may be high, the effective productivity is

determined by the overall cycle time from prompt to deployable solution. [3][6]

3.5. Complexity in Domain-Specific Code Generation

AI tools often struggle with complex, domain-specific requirements, especially without a well-detailed and step-

by-step prompt. In software projects that involve business logic or specialized algorithms, the AI might produce

code that is syntactically correct but semantically flawed. [2][5]

For example, when generating code for a financial application, the AI might misinterpret regulatory constraints

or calculation nuances. Consider this pseudo-code for a risk assessment calculation:

Figure 2: AI Generated pseudo code for risk assessment calculations

While the logic here is straightforward, in a real financial application, the risk calculation might need to

incorporate factors like covariance, liquidity, and market conditions. The AI-generated code may omit these

critical aspects. As a result, developers must invest time in adjusting the algorithms to meet specific domain

standards. This complexity increases the risk of errors and diminishes the utility of AI-generated code in high-

stakes environments. [5]

IV. AI in Code Generation Tools
Artificial intelligence has become central to modern coding workflows. Tools like GitHub Copilot and

OpenAI Codex rely on deep learning to complete code based on natural language prompts. These tools learn from

extensive code repositories and produce outputs rapidly. [6]

Their strengths include accelerating repetitive coding tasks and offering suggestions that help developers

overcome writer’s block. However, users report issues such as inconsistent code quality and a lack of deep context

awareness, which sometimes forces developers to invest extra effort in debugging and refactoring. [1]

Table 1 compares six of the most prominent code generation tools currently out there, used by professionals [7].
Tool Name Developer/Origin Strengths Common Issues

GitHub Copilot GitHub / OpenAI Fast autocompletion; seamless IDE

integration; reduces boilerplate code

Occasional inaccuracies; can produce verbose or

over-engineered solutions

OpenAI Codex OpenAI Strong language understanding; efficient
for generating standard code snippets

Struggles with complex logic; sometimes
ignores architectural context

ChatGPT 4.5 OpenAI High readability; conversational code

generation; supports iterative refinement

May generate code that lacks error handling;

tends to simplify complex tasks excessively

Claude 3.7

Sonnet

Anthropic Excellent at structured reasoning;

produces clean and legible code

Response time can be slow; less effective with

legacy code or highly specialized frameworks

DeepSeek R1 DeepSeek (China) Advanced reasoning in mathematical and

coding tasks; cost-efficient; high precision

Integration issues with legacy systems;

sometimes produces code that deviates from
conventional patterns

Codebuddy Independent /

Startup

Combines planning with generation;

offers context-aware suggestions; strong
in multi-file tasks

Occasional difficulties with large codebases;

limited support for some niche programming
languages

Table 1: Comparison of 6 common AI Code generators.

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 79 | Page

Each of these tools brings a unique complement of speed, ease-of-use, and technical capability. For

instance, GitHub Copilot is praised for its rapid autocompletion and tight IDE integration, but it may sometimes

require manual oversight to ensure that its suggestions fit within a project’s architecture.

OpenAI Codex is strong in generating standard code patterns, yet it occasionally fails when faced with

highly complex logic. ChatGPT 4.5 and Claude 3.7 Sonnet excel in generating legible code with proper structure,

though both may simplify sophisticated problems. DeepSeek R1 shows promise in advanced reasoning tasks,

especially in math-intensive or algorithmic challenges, while Codebuddy has been noted for its planning step that

preemptively structures the generated code. Common across all these tools is the challenge of aligning the

generated output with the larger project context, which remains a key area where human expertise is essential. [7]

V. Comparisons Between AI-Generated and Human-Written Code
When comparing AI-generated code with human-written code, technical differences emerge that affect

readability, maintainability, and overall design. To express these points, consider two examples. In the first

example (Figure 3), a simple function calculates the factorial of a number. [8]

In the second example (Figure 4), a class implements a basic queue data structure. Both examples include

code snippets from an AI tool and a human developer.

For the factorial function, the AI-generated code might appear as follows:

Figure 3: AI Generated Factorial Python code

This code is clear and concise. It checks for negative input and handles the base case explicitly. However, the

human-written version might include additional comments and a slightly different structure:

Figure 4: Human-written Factorial Python Code

Both functions achieve the same goal, but the human-written code includes inline comments. These comments

provide context and reasoning behind each condition, making the logic more transparent to someone maintaining

the code. The AI version, while functionally correct, may lack these contextual hints that are beneficial in a

collaborative environment. [5][8]

Now, consider a more complex example: a class that implements a basic queue. The AI-generated version may

look like this:

Figure 5: AI-generated basic queue code

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 80 | Page

In contrast, a human-written version of the same functionality might include better error handling and more

detailed documentation:

Figure 6: Human-written basic queue code

In this second example, both versions provide the same core functionality. However, the human-written

code incorporates detailed comments and a slightly more structured error check by reusing the is_empty() method

within dequeue(). This approach promotes code reuse and clarity. Moreover, human developers often adopt

naming conventions and code structuring practices that align with a project’s style guide, ensuring consistency

across a large codebase.

This shows that while AI-generated code offers speed and the ability to produce boilerplate code quickly,

it may sometimes lack the depth of explanation and reliability that human-written code exhibits. The AI versions

tend to follow common patterns and might omit critical contextual information, whereas human developers add

nuanced comments, error checks and adhere to specific architectural guidelines. These differences showcase the

importance of human oversight in maintaining high-quality, maintainable code while utilizing the productivity

gains of AI tools.

VI. Productivity Metrics in Developer Workflows Using AI-Based Tools
Developers now measure productivity by the amount of code written as well as by how quickly they

resolve issues and complete tasks. Many teams track metrics like the number of code commits, lines of code

produced, and the time taken to fix bugs. Recent studies indicate that AI-based tools can boost productivity by

20% to 45%. [7]

These improvements are seen in faster iteration times, increased code commit frequencies, and more

frequent code refactoring. Developers now integrate automated logging within their workflows. For example, a

simple logging function in Python can record the time a commit is made and the duration of coding sessions [1][5].

Figure 7: AI-Generated recording code

This snippet shows how teams can measure the time it takes to complete a coding task. In real-world

scenarios, these logs feed into analytics systems that aggregate data on task completion times and error rates. AI

tools help generate code and assist in detecting bugs early by suggesting fixes. As a result, the entire software

delivery pipeline sees improvement. [1][3][7][9]

Continuous integration systems use these metrics to compare performance before and after the

introduction of AI assistants. Transitioning between manual and AI-assisted workflows provides quantitative data

that supports investment in these tools. Despite the gains in speed, teams must account for time spent on debugging

AI-generated code. Therefore, overall productivity is best measured by balancing output quantity with code

quality and system stability. [9]

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 81 | Page

VII. Developer Trust and Interaction with AI-Generated Code
Establishing trust in AI-generated code is a critical challenge when it comes to automating workflows or

simply speeding it up. Developers must decide whether to accept a suggestion or modify it based on their

understanding of the project. Trust builds over time when the AI consistently produces correct and maintainable

code. [5]

However, many developers report that AI-generated code sometimes lacks deeper context and may miss

edge cases. For example, when an AI tool produces a function without clear error handling, developers must

inspect and improve the code manually. This oversight process increases cognitive load but is necessary for long-

term project stability.

Consider a situation where an AI generates a function for data parsing:

Figure 8: AI-generated data parsing function

A human-written version of the same might look like this:

Figure 9: AI-generated data parsing function

Here, the human version includes validation and processing steps that ensure reliability. Developers

interact with AI tools by reviewing such differences. They often use code review systems and pair programming

sessions to validate and improve AI outputs. Moreover, some teams integrate feedback loops into their

development process. When a tool generates code that consistently misses critical patterns, developers can train

it further or adjust their prompts. [8][5]

Trust also comes from transparency. Some tools now expose part of their internal reasoning or prompt

history. This exposure helps developers understand how the AI arrived at a solution, reinforcing or undermining

their trust based on observable logic. Over time, as AI models refine their outputs and align better with team

standards, trust increases. Yet, a human in the loop remains essential to manage risks, maintain quality, and ensure

that critical business logic is correctly implemented.

VIII. Recommendations
To make the most of AI in coding while mitigating risks, organizations should adopt a flexible strategy.

First, it is essential to integrate AI tools directly into the existing development environment. Tight IDE integration,

as seen with GitHub Copilot and Codebuddy, speeds up the coding process and minimizes context switching.

Next, teams must establish rigorous code review practices. Developers should use continuous integration

pipelines that automatically run tests on AI-generated code. This ensures that any deviations from expected

behavior are caught early. Additionally, teams should invest in training sessions where developers learn how to

effectively prompt and interpret AI outputs. Understanding the limitations and strengths of AI tools, developers

can craft better prompts and provide feedback that leads to iterative improvements.

Furthermore, measuring productivity requires more than just counting lines of code; teams should monitor metrics

such as commit frequency, error rates, and time-to-deploy. These metrics help in understanding the net benefit of

AI integration.

Finally, organizations must create a culture that balances innovation with accountability. Developers

should be encouraged to experiment with AI tools while maintaining high standards for code quality and system

reliability. With continuous assessment of both the quantitative and qualitative aspects of AI-assisted

development, teams can optimize workflows and achieve sustainable productivity gains while preserving the

integrity of their software systems.

IX. Conclusion
Our investigation shows that AI-generated code tools have transformed software development. These

tools help developers complete tasks faster, reducing routine work and boosting productivity. However, they do

not entirely replace human expertise. The generated code can lack context and sometimes miss error handling.

Human oversight remains essential.

Our analysis shows that tools such as GitHub Copilot, OpenAI Codex, ChatGPT 4.5, Claude, DeepSeek

R1, and Codebuddy each offer unique strengths. They improve coding speed and provide useful suggestions. Yet,

they also introduce challenges in consistency, integration with legacy systems, and maintainability. Detailed

The Impact of AI-Generated Code on Software Quality and Developer Productivity

DOI: 10.9790/0661-2701017682 www.iosrjournals.org 82 | Page

comparisons show that while AI can produce legible and efficient code, human-written code often includes critical

error checks and explanatory comments that enhance clarity and reliability.

Productivity metrics indicate significant time savings and increased commit frequencies. However, the time spent

reviewing and debugging AI-generated code can offset these gains. Developer trust builds over time as AI outputs

improve. Feedback loops and iterative testing are key to aligning AI-generated code with project standards.

References
[1] B. K. Deniz, C. Gnanasambandam, M. Harrysson, A. Hussin, and S. Srivastava, “Unleashing developer productivity with

generative AI,” McKinsey & Company, Jun. 27, 2023. https://www.mckinsey.com/capabilities/mckinsey-digital/our-

insights/unleashing-developer-productivity-with-generative-ai
[2] A. Soni, A. Kumar, R. Arora, and R. Garine, “Integrating AI into the Software Development Life Cycle: Best Practices, Tools, and

Impact Analysis,” SSRN, Jan. 2024, doi: 10.2139/ssrn.4918992.

[3] C. Pantin, “The impact of AI-generated code on the future of junior developers,” Theseus, 2024.
https://www.theseus.fi/handle/10024/866717

[4] “Automatic generation of algorithms,” Google Books. January, 2025

https://books.google.com.pk/books?hl=en&lr=&id=ke04EQAAQBAJ&oi=fnd&pg=PP1&dq=when+the+AI+tackles+more+com
plex+tasks,+it+may+insert+redundant+checks+or+use+non-optimal+algorithms+&ots=M0bvnrGd-7&sig=f6ro-

F8ONaJEpNQpA7BsvBqdsmc&redir_esc=y#v=onepage&q&f=false

[5] A. Brown, S. D’Angelo, A. Murillo, C. Jaspan, and C. Green, “Identifying the Factors That Influence Trust in AI Code
Completion,” Proceedings of the 1st ACM International Conference on AI-Powered Software, pp. 1–9, Jul. 2024, doi:

10.1145/3664646.3664757.

[6] S. Afroogh, A. Akbari, E. Malone, M. Kargar, and H. Alambeigi, “Trust in AI: progress, challenges, and future directions,”
Humanities and Social Sciences Communications, vol. 11, no. 1, Nov. 2024, doi: 10.1057/s41599-024-04044-8.

[7] I. Education, “AI code-generation software: What it is and how it works?,” AI code-generation software, Nov. 25, 2024.

https://www.ibm.com/think/topics/ai-code-generation
[8] “A Comparative Analysis between AI Generated Code and Human Written Code: A Preliminary Study,” IEEE Conference

Publication | IEEE Xplore, Dec. 15, 2024. https://ieeexplore.ieee.org/abstract/document/10825958/

[9] S. Shah, “THE RISE OF AI AGENTS IN ENTERPRISE SOFTWARE DEVELOPMENT,” Oct. 11, 2024. https://lib-
index.com/index.php/IJCET/article/view/IJCET_15_05_074

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://books.google.com.pk/books?hl=en&lr=&id=ke04EQAAQBAJ&oi=fnd&pg=PP1&dq=when+the+AI+tackles+more+complex+tasks,+it+may+insert+redundant+checks+or+use+non-optimal+algorithms+&ots=M0bvnrGd-7&sig=f6ro-F8ONaJEpNQpA7BsvBqdsmc&redir_esc=y#v=onepage&q&f=false
https://books.google.com.pk/books?hl=en&lr=&id=ke04EQAAQBAJ&oi=fnd&pg=PP1&dq=when+the+AI+tackles+more+complex+tasks,+it+may+insert+redundant+checks+or+use+non-optimal+algorithms+&ots=M0bvnrGd-7&sig=f6ro-F8ONaJEpNQpA7BsvBqdsmc&redir_esc=y#v=onepage&q&f=false
https://books.google.com.pk/books?hl=en&lr=&id=ke04EQAAQBAJ&oi=fnd&pg=PP1&dq=when+the+AI+tackles+more+complex+tasks,+it+may+insert+redundant+checks+or+use+non-optimal+algorithms+&ots=M0bvnrGd-7&sig=f6ro-F8ONaJEpNQpA7BsvBqdsmc&redir_esc=y#v=onepage&q&f=false
https://www.ibm.com/think/topics/ai-code-generation
https://ieeexplore.ieee.org/abstract/document/10825958/
https://lib-index.com/index.php/IJCET/article/view/IJCET_15_05_074
https://lib-index.com/index.php/IJCET/article/view/IJCET_15_05_074

