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Abstract: Artificial intelligence has changed how we write code. AI-based code generation tools now help 

developers work faster. These tools, such as GitHub Copilot, OpenAI Codex, ChatGPT 4.5, Claude, and DeepSeek 

R1, generate code by learning from millions of examples. They improve productivity and reduce repetitive tasks. 

However, their impact on software quality varies. Some AI-generated code is clean and efficient, while other 

outputs need human refinement. This paper investigates how AI-based code generation tools affect software 

quality and developer productivity. It compares AI-generated code with human-written code. It also examines 

productivity metrics and how developers interact with these tools. The study relies on research data and real-

world examples. It stays objective and technical. In short, this article offers a detailed, research-intensive 

overview of the what, how, and results of using AI for coding. 
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I. Introduction 
In recent years, artificial intelligence has transformed the coding world. AI tools now assist developers 

by generating code from natural language prompts. These models use deep learning and vast training data. They 

gain insights by analyzing millions of lines of code. As a result, they can produce working code quickly. Moreover, 

they help reduce routine work and free developers to focus on complex tasks. 

Many companies now use AI-based code generators. GitHub Copilot and OpenAI Codex were among 

the first to be widely adopted. Later, models like ChatGPT 4.5, Claude, and DeepSeek R1 entered the scene. Each 

model has its strengths and weaknesses. For example, ChatGPT 4.5 often generates code with high readability, 

while DeepSeek R1 shows promise in advanced reasoning and mathematical tasks. Furthermore, some tools 

emphasize speed, and others offer more detailed problem-solving. 

Research shows that developers using AI coding assistants can complete tasks 20% to 45% faster than 

traditional methods. Studies also indicate that junior developers tend to benefit the most from these tools. At the 

same time, quality remains a concern. While AI-generated code can be efficient, it sometimes lacks the nuanced 

understanding of experienced human developers. Thus, developers must review and refine AI outputs.[1] 

Additionally, the integration of these tools into development workflows has reshaped the software life 

cycle. AI models now work alongside version control systems and integrated development environments (IDEs) 

to help maintain a consistent codebase. They offer context awareness through vectorization techniques that search 

large code repositories for relevant patterns. Developers now benefit from faster prototyping and debugging. 

However, they still need to verify that the generated code meets the project’s architectural standards and quality 

benchmarks. [2] 

These rapid changes have sparked much discussion. Developers now debate the best models and 

workflows. They weigh the advantages of speed against potential risks to code quality. In the following sections, 

this article will delve deeper into the specifics of AI in code generation, comparisons with human-written code, 

productivity metrics, and developer trust. 

 

II. Literature Review 
The integration of AI into software development has garnered significant scholarly attention in recent 

years. Deniz et al. [1] show that generative AI tools are transforming developer productivity by accelerating code 

commits and reducing repetitive tasks. Complementing this view, Soni et al. [2] detail best practices for integrating 

AI into the software development life cycle, offering technical guidelines and impact analysis that help bridge the 

gap between traditional coding practices and modern automated approaches. 

Research also highlights concerns regarding the future role of junior developers. Pantin [3] argues that 

although AI-generated code can speed up routine tasks, it may hinder the learning curve for less experienced 

developers by limiting their exposure to essential debugging processes. In parallel, literature on automatic 
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algorithm generation [4] illustrates that when handling complex tasks, AI may insert redundant checks or opt for 

non-optimal algorithms, thus challenging the balance between efficiency and code quality. 

Trust in AI-generated code remains a critical area of investigation. Brown et al. [5] examine factors that influence 

trust in AI code completion, noting that consistency and transparency are vital for developer acceptance. Afroogh 

et al. [6] further explore the progress and persistent challenges in building trust in AI systems, emphasizing the 

need for clear explanations and robust error handling. Resources like those from IBM [7] serve to demystify AI 

code-generation software, thereby enhancing developers’ confidence in these emerging tools. 

A comparative analysis between AI-generated and human-written code is crucial to understanding both 

the benefits and limitations of these systems. A preliminary study [8] indicates that while AI can rapidly generate 

functional code snippets, human-written code often includes richer context, error checking, and commentary that 

enhance maintainability. Shah [9] discusses the rise of AI agents in enterprise software development, suggesting 

that the future will increasingly rely on these systems to assist developers. However, human oversight remains 

indispensable to ensure that critical business logic and complex design considerations are properly addressed. 

 

III. Problem Statement 
AI-generated code introduces challenges that affect both the quality of software and the productivity of developers 

[2] [3]. The core problem lies in balancing the speed of code generation with the reliability and maintainability of 

the resulting code. AI tools can produce code quickly, but the outputs sometimes lack consistency or context. This 

disparity raises issues for integration into large codebases and places an extra burden on developers who must 

verify and refine the generated code. 

 

3.1. Inconsistent Code Quality and Maintainability 

One major problem is the inconsistency in code quality. AI models generate code based on patterns they have 

learned, yet they often produce solutions that vary in quality [3]. For instance, consider the simple Python function 

generated by an AI tool: 

 

 
Figure 1: AI Generated code 

 

This code is clear and concise. However, when the AI tackles more complex tasks, it may insert redundant 

checks or use non-optimal algorithms [2] [5]. The generated code can have unnecessary nested conditions or 

duplicate logic that increases technical debt. Moreover, the code may not adhere to established design patterns, 

making it harder to maintain. Developers must refactor and test the outputs to ensure they integrate well with the 

rest of the system. Thus, although AI speeds up code production, it introduces variability that undermines long-

term maintainability [3]. 

 

3.2. Integration Challenges in Legacy Codebases 

Another problem is integrating AI-generated code into existing legacy systems. Modern AI tools often 

generate code in isolation, without the full context of an established codebase. Legacy systems usually have 

specific architectural constraints and coding conventions that the AI might overlook. For example, an AI might 

generate a new module that does not follow the dependency injection pattern used in the existing system. [3] 

The code may work independently but can break the overall system when merged. In these cases, developers must 

manually align the new code with the legacy architecture. This process demands additional time and increases the 

risk of introducing bugs during integration, as the AI-generated code might not seamlessly interface with other 

components. [2] [4] 

 

3.3. Developer Trust and Oversight 

A further challenge is establishing trust in AI-generated code [5]. Developers need to verify that the code 

compiles and performs the intended function reliably. Although AI tools offer a significant boost in productivity, 

they cannot fully replace the human ability to understand the deeper context of a problem.  

Developers must scrutinize AI outputs, often line by line, to ensure correctness. For example, the AI 

might generate a function that appears efficient but omits important error handling. Developers then have to insert 

additional code to manage exceptions or to validate inputs. This oversight increases the cognitive load and reduces 

the net productivity gains promised by AI tools. [3] 
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Trust is built gradually, and until AI can guarantee context-aware decisions, human intervention remains crucial. 

[6] 

 

3.4. Productivity Measurement and Overhead 

Measuring the productivity gains from AI coding tools also presents technical challenges. Although studies report 

improvements ranging from 20% to 45%, these figures often do not account for the additional time developers 

spend on reviewing and debugging AI-generated code.  

For instance, a developer might complete a coding task faster with AI assistance but later invest extra time to 

understand the AI’s internal logic and correct any flaws. This overhead can offset some of the initial speed 

improvements. Moreover, integrating these tools into the development workflow requires a strong setup with 

version control and continuous integration pipelines.  

The extra steps needed to ensure compatibility and maintain quality further complicate productivity 

measurements. In technical terms, while the raw code generation rate may be high, the effective productivity is 

determined by the overall cycle time from prompt to deployable solution. [3][6] 

 

3.5. Complexity in Domain-Specific Code Generation 

AI tools often struggle with complex, domain-specific requirements, especially without a well-detailed and step-

by-step prompt. In software projects that involve business logic or specialized algorithms, the AI might produce 

code that is syntactically correct but semantically flawed.  [2][5] 

For example, when generating code for a financial application, the AI might misinterpret regulatory constraints 

or calculation nuances. Consider this pseudo-code for a risk assessment calculation: 

 

 
Figure 2: AI Generated pseudo code for risk assessment calculations 

 

While the logic here is straightforward, in a real financial application, the risk calculation might need to 

incorporate factors like covariance, liquidity, and market conditions. The AI-generated code may omit these 

critical aspects. As a result, developers must invest time in adjusting the algorithms to meet specific domain 

standards. This complexity increases the risk of errors and diminishes the utility of AI-generated code in high-

stakes environments. [5] 

 

IV. AI in Code Generation Tools 
Artificial intelligence has become central to modern coding workflows. Tools like GitHub Copilot and 

OpenAI Codex rely on deep learning to complete code based on natural language prompts. These tools learn from 

extensive code repositories and produce outputs rapidly. [6] 

Their strengths include accelerating repetitive coding tasks and offering suggestions that help developers 

overcome writer’s block. However, users report issues such as inconsistent code quality and a lack of deep context 

awareness, which sometimes forces developers to invest extra effort in debugging and refactoring. [1] 

Table 1 compares six of the most prominent code generation tools currently out there, used by professionals [7]. 
Tool Name Developer/Origin Strengths Common Issues 

GitHub Copilot GitHub / OpenAI Fast autocompletion; seamless IDE 

integration; reduces boilerplate code 

Occasional inaccuracies; can produce verbose or 

over-engineered solutions 

OpenAI Codex OpenAI Strong language understanding; efficient 
for generating standard code snippets 

Struggles with complex logic; sometimes 
ignores architectural context 

ChatGPT 4.5 OpenAI High readability; conversational code 

generation; supports iterative refinement 

May generate code that lacks error handling; 

tends to simplify complex tasks excessively 

Claude 3.7 

Sonnet 

Anthropic Excellent at structured reasoning; 

produces clean and legible code 

Response time can be slow; less effective with 

legacy code or highly specialized frameworks 

DeepSeek R1 DeepSeek (China) Advanced reasoning in mathematical and 

coding tasks; cost-efficient; high precision 

Integration issues with legacy systems; 

sometimes produces code that deviates from 
conventional patterns 

Codebuddy Independent / 

Startup 

Combines planning with generation; 

offers context-aware suggestions; strong 
in multi-file tasks 

Occasional difficulties with large codebases; 

limited support for some niche programming 
languages 

Table 1: Comparison of 6 common AI Code generators. 

 



The Impact of AI-Generated Code on Software Quality and Developer Productivity 

DOI: 10.9790/0661-2701017682                                     www.iosrjournals.org                                         79 | Page 

Each of these tools brings a unique complement of speed, ease-of-use, and technical capability. For 

instance, GitHub Copilot is praised for its rapid autocompletion and tight IDE integration, but it may sometimes 

require manual oversight to ensure that its suggestions fit within a project’s architecture. 

OpenAI Codex is strong in generating standard code patterns, yet it occasionally fails when faced with 

highly complex logic. ChatGPT 4.5 and Claude 3.7 Sonnet excel in generating legible code with proper structure, 

though both may simplify sophisticated problems. DeepSeek R1 shows promise in advanced reasoning tasks, 

especially in math-intensive or algorithmic challenges, while Codebuddy has been noted for its planning step that 

preemptively structures the generated code. Common across all these tools is the challenge of aligning the 

generated output with the larger project context, which remains a key area where human expertise is essential. [7] 

 

V. Comparisons Between AI-Generated and Human-Written Code 
When comparing AI-generated code with human-written code, technical differences emerge that affect 

readability, maintainability, and overall design. To express these points, consider two examples. In the first 

example (Figure 3), a simple function calculates the factorial of a number. [8] 

In the second example (Figure 4), a class implements a basic queue data structure. Both examples include 

code snippets from an AI tool and a human developer. 

 

For the factorial function, the AI-generated code might appear as follows: 

 
Figure 3: AI Generated Factorial Python code 

 

This code is clear and concise. It checks for negative input and handles the base case explicitly. However, the 

human-written version might include additional comments and a slightly different structure: 

 

 
Figure 4: Human-written Factorial Python Code 

 

Both functions achieve the same goal, but the human-written code includes inline comments. These comments 

provide context and reasoning behind each condition, making the logic more transparent to someone maintaining 

the code. The AI version, while functionally correct, may lack these contextual hints that are beneficial in a 

collaborative environment. [5][8] 

Now, consider a more complex example: a class that implements a basic queue. The AI-generated version may 

look like this: 

 
Figure 5: AI-generated basic queue code 
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In contrast, a human-written version of the same functionality might include better error handling and more 

detailed documentation: 

 
Figure 6: Human-written basic queue code 

 

In this second example, both versions provide the same core functionality. However, the human-written 

code incorporates detailed comments and a slightly more structured error check by reusing the is_empty() method 

within dequeue(). This approach promotes code reuse and clarity. Moreover, human developers often adopt 

naming conventions and code structuring practices that align with a project’s style guide, ensuring consistency 

across a large codebase. 

This shows that while AI-generated code offers speed and the ability to produce boilerplate code quickly, 

it may sometimes lack the depth of explanation and reliability that human-written code exhibits. The AI versions 

tend to follow common patterns and might omit critical contextual information, whereas human developers add 

nuanced comments, error checks and adhere to specific architectural guidelines. These differences showcase the 

importance of human oversight in maintaining high-quality, maintainable code while utilizing the productivity 

gains of AI tools. 

 

VI. Productivity Metrics in Developer Workflows Using AI-Based Tools 
Developers now measure productivity by the amount of code written as well as by how quickly they 

resolve issues and complete tasks. Many teams track metrics like the number of code commits, lines of code 

produced, and the time taken to fix bugs. Recent studies indicate that AI-based tools can boost productivity by 

20% to 45%. [7] 

These improvements are seen in faster iteration times, increased code commit frequencies, and more 

frequent code refactoring. Developers now integrate automated logging within their workflows. For example, a 

simple logging function in Python can record the time a commit is made and the duration of coding sessions [1][5]. 

 

 
Figure 7: AI-Generated recording code 

 

This snippet shows how teams can measure the time it takes to complete a coding task. In real-world 

scenarios, these logs feed into analytics systems that aggregate data on task completion times and error rates. AI 

tools help generate code and assist in detecting bugs early by suggesting fixes. As a result, the entire software 

delivery pipeline sees improvement. [1][3][7][9] 

Continuous integration systems use these metrics to compare performance before and after the 

introduction of AI assistants. Transitioning between manual and AI-assisted workflows provides quantitative data 

that supports investment in these tools. Despite the gains in speed, teams must account for time spent on debugging 

AI-generated code. Therefore, overall productivity is best measured by balancing output quantity with code 

quality and system stability. [9] 
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VII. Developer Trust and Interaction with AI-Generated Code 
Establishing trust in AI-generated code is a critical challenge when it comes to automating workflows or 

simply speeding it up. Developers must decide whether to accept a suggestion or modify it based on their 

understanding of the project. Trust builds over time when the AI consistently produces correct and maintainable 

code. [5] 

However, many developers report that AI-generated code sometimes lacks deeper context and may miss 

edge cases. For example, when an AI tool produces a function without clear error handling, developers must 

inspect and improve the code manually. This oversight process increases cognitive load but is necessary for long-

term project stability. 

Consider a situation where an AI generates a function for data parsing: 

 

 
Figure 8: AI-generated data parsing function 

 

A human-written version of the same might look like this: 

 
Figure 9: AI-generated data parsing function 

 

Here, the human version includes validation and processing steps that ensure reliability. Developers 

interact with AI tools by reviewing such differences. They often use code review systems and pair programming 

sessions to validate and improve AI outputs. Moreover, some teams integrate feedback loops into their 

development process. When a tool generates code that consistently misses critical patterns, developers can train 

it further or adjust their prompts. [8][5] 

Trust also comes from transparency. Some tools now expose part of their internal reasoning or prompt 

history. This exposure helps developers understand how the AI arrived at a solution, reinforcing or undermining 

their trust based on observable logic. Over time, as AI models refine their outputs and align better with team 

standards, trust increases. Yet, a human in the loop remains essential to manage risks, maintain quality, and ensure 

that critical business logic is correctly implemented. 

 

VIII. Recommendations 
To make the most of AI in coding while mitigating risks, organizations should adopt a flexible strategy. 

First, it is essential to integrate AI tools directly into the existing development environment. Tight IDE integration, 

as seen with GitHub Copilot and Codebuddy, speeds up the coding process and minimizes context switching.  

Next, teams must establish rigorous code review practices. Developers should use continuous integration 

pipelines that automatically run tests on AI-generated code. This ensures that any deviations from expected 

behavior are caught early. Additionally, teams should invest in training sessions where developers learn how to 

effectively prompt and interpret AI outputs. Understanding the limitations and strengths of AI tools, developers 

can craft better prompts and provide feedback that leads to iterative improvements.  

Furthermore, measuring productivity requires more than just counting lines of code; teams should monitor metrics 

such as commit frequency, error rates, and time-to-deploy. These metrics help in understanding the net benefit of 

AI integration.  

Finally, organizations must create a culture that balances innovation with accountability. Developers 

should be encouraged to experiment with AI tools while maintaining high standards for code quality and system 

reliability. With continuous assessment of both the quantitative and qualitative aspects of AI-assisted 

development, teams can optimize workflows and achieve sustainable productivity gains while preserving the 

integrity of their software systems. 

 

IX. Conclusion 
Our investigation shows that AI-generated code tools have transformed software development. These 

tools help developers complete tasks faster, reducing routine work and boosting productivity. However, they do 

not entirely replace human expertise. The generated code can lack context and sometimes miss error handling. 

Human oversight remains essential. 

Our analysis shows that tools such as GitHub Copilot, OpenAI Codex, ChatGPT 4.5, Claude, DeepSeek 

R1, and Codebuddy each offer unique strengths. They improve coding speed and provide useful suggestions. Yet, 

they also introduce challenges in consistency, integration with legacy systems, and maintainability. Detailed 
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comparisons show that while AI can produce legible and efficient code, human-written code often includes critical 

error checks and explanatory comments that enhance clarity and reliability. 

Productivity metrics indicate significant time savings and increased commit frequencies. However, the time spent 

reviewing and debugging AI-generated code can offset these gains. Developer trust builds over time as AI outputs 

improve. Feedback loops and iterative testing are key to aligning AI-generated code with project standards. 
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