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Abstract: In answer set programming, the existence of an answer set for a logic program is not guaranteed. In
order to remedy this problem, an incremental answer sets have been introduced. In this paper a concept of a
justified answer set is introduced. The idea is to obtain a construct similar to justified extensions of default
theories with a semi-monotonicity fixed point operator, and similarly to the concept of incremental answer sets
to guarantee existence of an extension. Furthermore, at the level of fixed-points, we establish a one-to-one
correspondence between justified answer sets of a logic program and justified extensions of the default theory.
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l. Introduction

Answer Set Programming (ASP; [1]) has emerged as an attractive paradigm for declarative problem
solving ([11],[24],[15])Originally, it was developed as a declarative branch of logic programming [12], where
the semantics of logic programs is given by their answer sets [8]. The answer set semantics is closely related to
other non monotonic formalisms, such as Reiter’s default logic [16] and Clark’s completion [4]. Similar to them,
the existence of an answer set for a logic program is not guaranteed. In order to remedy this problem, an
incremental answer set approach (z-answer sets) has been proposed in ([5], [6], [7],[9]) In this paper, we
introduce justified answer sets extension of t-answer sets. The respective concept of justified answer sets is
defined by the fixed-points construction.

It leads to that a justified answer set of a logic program is a pair of sets of atoms, and any logic program
having at least one justified answer set. The concept of justified answer sets guarantees their existence for every
logic program by a property often called semi-monotonicity in the context of default logic. Furthermore, at the
level of fixed-points, we establish a one-to-one correspondence between justified answer sets of a logic program
and Lukaszewicz (justified) extensions [13] of the default theory. The outline of this paper is as follows. The
second section provides some basic concepts. In the third section, we introduce the concept of a justified answer
set and elaborate its formal properties. In the fourth section, we characterize the relationship between justified
answer sets and 1-answer sets. In the fifth section, we show that there is a one-to-one correspondence between
justified answer sets and Lukaszewicz extensions.

Il. Background
A (normal) logic program is a finite set of rules of the form
Ay Aq, ooy Ay, MOt Ay 4 q e nota, D

wheren > m > 0,andeach aq; (0 <i <n) isan atom.

Given a rule r as in (1), we denote the head of r by head(r) = a, and the body of r by body(r) =
{a,..,a,,notay, . ,.., nota,}. Furthermore, we let body*(r)={a,,..,a,}and body (r) =
{@n+1, -, a,} be the positive and negative body of r, respectively. For a logic program I1, we let body*(IT) =
U,epbody*(r) and body~(IT) = U,¢pbody~(r). A literal is either an atom or a negated atom. A program is
called basic if body~(r) = g for all r € I1. A set X of atoms is closed under a basic program IT if, for any
r € I1, head(r) € X whenever ody*(r) € X . The smallest set of atoms which is closed under a basic
program is denoted by Cn(IT). The redact of a logic program relative to a set X of atoms is

% = {head(r) «<body™(r)|r € Mand body=(r) N X =g}. A set X of atoms is an answer set of if
X = Cn(I1'%). For a program IT, we let Cn™(IT) = Cn(I1°). Note that 1? = {head(r) < body*(r) |r € I1}.
Alternative inductive characterizations for the operator Cn can be obtained by appeal to immediate consequence
operators [12]. For a logic program and a setX of atoms, the operator Tp(X) = {head(r) |r €1I,

body*(r) Xand body (r) n X =g}. Iterated applications of Tj are written as Tr’[' for j =0, where
T3(X) =X and T{(X) = Ty (Tﬁ‘l(X))fori > 1. It is well-known that Cn(IT) = U5, T (2), for any basic
program 1. Also, for any answer set X of program 11, it holds X = UizOTri[X(g)' For a program II and a set

X of atoms, the generating rules of X for [T are
Rp(X) ={r €ll| body*(r) S Xand body (r) n X = g}. In fact, one can show that X is an answer set of
m iff X =cn*(R;(X)) = Cn(IT*) = X.
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1. Justified Answer Sets
In answer set programming, the existence of an answer set is not guaranteed. Answer sets are defined
via a reduction of logic programs to basic program. It means that we cannot determine which rules make
blocking with each other. So we reduct the logic program according to a maximal subset of rules. This reduct
remove complete rules according to pair of sets of atoms. Now, we define the reduct of the logic program
according to pair of sets of atoms as follows.

Definition 3.1 Let be a logic program and let X and Y be sets of atoms.
The reduct of I relative to (X,Y ) is
O&Y = {r|r eI, (X Ufhead(r)}) n (YU body~(r)) = g}.
For illustration, consider the following logic program I1;:
n:a «a,
1,:b <nota, 2
T3:C ¢

We reduct this program according two sets as follows:

X, ) 118508
S28)) n:a «a,
1,:b < nota
73:iC €.
({a}, B n:a <a,
73iC &
b} ) n:a <a,
1,:b < nota
73:iC €.
({3 {a}) 7,:b «nota
73:C .
£ {p}) nia <a,
73:C .
({a},{b}) nia «a,
73:C .
({a, b}, {H) nia <a,
73:C .
({b},{a}) 1:b «nota
73:C .
({}.{a, b}) r3ic .
({ch nia <a,
1:b «—nota
73:C .
({a, ¢}, {b}) rn:a «<a,
73:C .
({b,c}.{a}) 1:b «nota
73:C .

According to a set X of atoms, the negative body of each r € II such that body*(r) € X and
body~(r) N X = g can be defined as follows.

Definition 3.2 Let I be a logic program and let X be a set of atoms.
We define the function S;(X) from a set of atoms to a set of atoms as
SuX) ={q|r €, body*(r) €X,q€ body (r)and body~(r) n X =g}.

We introduce justified answer sets as pair of sets of atoms this pair of sets are fixpoint of an operator. So, first
we define a consequence operator that induces a pair of sets of atoms as follows.

Definition 3.3 Let [T be a logic program and let X be set of atoms.
The consequence operator 75(X) is (X)) = (Tp(X), Sp(X)).
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We observe that operator t;; induces a pair (X', Y") of sets of atoms. For comparing two pairs of sets of atoms
(X, Y)and (X', Y, wedefine (X', Y)E(X,Y) if X' S Xand Y SV .Then, operator Tt is monotonic
in the following sense.

Theorem 3.1 Let be a logic program and let X and X be two sets of atoms.
IfX cXthentp(X) & 75(X)

Since operator t; is monotonic, it has a least fixedpoints [17]. We denote the least fixed-points of Ty by
Cn;(I1). Observe that the second argument of Cn;(I1) is completely determined by the first one.

Theorem 3.2 Let IT be a logic program and let X be a set of atoms.
Then, Cn;(I) = (X, Sp(X)) forX = Cn* (D).

For computing Cn;(IT). we may start with the empty set and iterate 7 until its least fixed-points is reached.
Iterated applications of t; are written as r{; forj=0 , where t3(X)=(X,Y) and
TH(X) = 1p ( T (X)) fori>0.

For two pairs of sets of atoms (X, Y)and (X', Y"), we define

X, Y)u(x', v),as (XUX', YUY". Thus, according to the Knaster-Tarski theorem [17], we conclude
that.

Corollary 3.3 For any logic program II,

Cn;(I0) = iz 777 (2).
Consequently, we introduce the relationship between the reduct of a logic program according to a pair of sets of
atoms and the consequence operator as following.

Theorem 3.4 Let IT be a logic program and let X and Y be sets of atoms.
Then, we have that X = Cn*(IT*Y)) and Y = S0 (X) iff (X, y) is the least fixpoint of 7,; ey .

Since operator 7;(X) has a least fixpoint, then by Definition 3.3 and [12]. We determine the least fixpoint by
Tp(X)and S (X). So we conclude that.

Corollary 3.5 Let IT be a logic program and (X, Y) be a pair of sets of atoms.
If (X, Y ) is ajustified answer set of II, then
X Y) = Uiz 75,0 (@)
In view of Corollary 3.3 and Theorem 3.4, we define justified answer sets of a logic program as follows.

Definition 3.4 Let IT be a logic program and let X and Y be sets of atoms.

Then, X is a justified answer set of IT with respect to Y iff X = Cn*(I1*1) andY = S, (X) such that
1.body*(II*N) € cn* (M *M)  and
2.body* (&) n Cnt(TT*N) = g.
This shows that a justified answer set of a logic program is a pair of sets of atoms. Definition 3.4 characterizes
justified answer sets (X, Y ) of IT in terms of the rules that apply with respect to (X, Y ). The set IT ) of such
rule is maximal among all subsets of  that satisfy conditions (1) and (2). Condition (1) guarantees that the
positive bodies of rules in IT ®Vare justified, while condition (2) makes sure that the rules in IT %) do not
block one another. That is, (X, Y) = Cny(I1 &) = (X, S, e (X)) where X = Cn*(IT*1).

For illustration, reconsider program I1, in (2), consisting of rules:
n:a «a,
1:b <nota
13:C .

www.iosrjournals.org 43 | Page



Justified Answer Set Programming

This Program has ({b, c},{a}) as its unique justified answer set, as can be verified by means of the following
table:

X, V) & Cn* (11 &) Span(X)
(838) n:a «a, {b,c} {a}
b «<nota
73iC ¢
({a}, {) n:a «a, {c} {}
73iC .
({p} 4 n:a <a, {b,c} {a}
b «nota
73:iC .
{2 {ad) 7,:b «nota {b,c} {a}
73iC .
(&3 {6} n:a «<a, {c} {}
73iC .
({a}, {b}) n:a «<a, {c} {}
73iC ¢
({a, b}, ) n:a «<a, {c} {}
73iC ¢
({b},{a}) ;b <nota { b} {a}
73iC .
({3 {a, b}) r3iC . {c} {}
({c} nia <a, {b,c} {a}
b «—nota
73iC .
({a, c}, {b}) n:a «<a, {c} {}
73:C .
(b, c}, {a}) r:b «nota {b,c} {a}
73:C .

In the following, we provide some properties of logic programs and their justified answer sets. A
fundamental result asserts that justified answer sets of a logic programs are extended when additional rules are
introduced. This property, often called semi-monotonicity in the context of default logic, can be stated as
follows.

Theorem 3.6 Let IT and 11’ be two logic programs such that IT' € 1. Let (X,Y ) and (X', Y") be two pairs of sets
of atoms.

If X'is a justified answer set of IT" with respect to Y, then there exists a justified answer set X of IT with
respect to Y such that X' € XandY C Y.

For illustration, reconsider Program 1, in (2) and program I1={r;} c II,. The program 1" has a justified answer
set (X,Y") = ({c},9). We have seen that I1, has unique justified answer set (X,Y) = ({b, c},{a}). Then, we
concludethat X' € X andY' C Y.

As a consequence of Theorem 3.6, we obtain the following result.

Corollary 3.7 Any logic program has a justified answer set.
Now, we proceed to give some results characterizing the relationship among standard answer sets and justified
answer sets.

Theorem 3.8 Let IT be a logic program and let X and Y be two sets of atoms.
If X is an answer set of II, then X is a justified answer set of IT with respect to Y .
In other words, the set of justified answer sets of a logic program IT forms a superset of its answer sets.
For illustration, consider the following logic program I15:
n:a «,
,:b «nota
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This program has two justified answer sets: ({a}, ) and ({b}, {a}).However, ({a}) is the only classical answer
set I1;.

V. Relationship to t-Answer Sets
In this section, we characterize the relationship between justified answer sets and t-answer sets. In the
following, we introduce a justified answer set without fixed-points. The characterization is based on the notion
of generating rules. This leads us to the concept of generating rules as follows.

Definition 4.1 Let IT be a logic program and let X and Y be sets of atoms.

We define the set of generating rules of IT with respect to (X,Y ) as
Rpy(X) ={r €Il| body*(r) < Xand (XU{head(r)}) n (YU body (r)) = @}. From this definition we can
derive the following result.

Theorem 4.1 Let IT be a logic program and let X and Y be sets of atoms.
Then, (X,Y ) is a justified answer set of [T iff X = Cn*(Rp(X,Y))andY = body (Rp(X,Y)).

This result show that the concept of generating rules yields an alternative characterization of justified answer
sets. From Definition 4.1 and Theorem 4.1, we obtain the following result.

Theorem 4.2 Let IT be a logic program and let X and Y be sets of atoms.
Then, (X,Y) is a justified answer set of I1 iff X = Cn*([1)andY = body~(IT') for some I1" € Tsuch
that for eachr € I1
1. If r € II',then body™(r) < Xand (X U{head(r)}) n (YU body~(r)) = a}.
2. Ifr & I, then body*(r) € Xand (X U{head(r)}) n (YU body~ (1)) # g}.

Theorem 4.2 characterizes a justified answer set (X, Y ) of IT in terms of the rules that apply conditions (1) and
(2). Thus, the set of rules 1T is maximal among all subsets of IT that satisfy conditions (1) and (2). This leads us
to the following result.

Theorem 4 .3 Let IT be a logic program and let X and Y betwo sets of atoms.
Then, X is a justified answer setwrt Y of [T X = Cn*(I1")andY = body~(I1") for some S maximal
11" € Tsuch such that
1. body*(I1) < Cn™(IT)
2. . body=(IIY nCn*(I1) =a.

From Theorem 4.3, we have that X is a justified answer set wrt Y of IT iff X is an t-answer set of IT such that
XnY = g So, From Theorem 4.3 and Definition 1 in [7], we conclude that there is a one-to-one
corresponding between justified answer sets and t-answer

sets of logic programs.

V. Relationship to Default Logic
Lukaszewicz [13] modified default logic in order to guarantee the existence of extensions and
semimonotonicity for general default theories. The correspondence between Reiter’s default logic [16] and logic
programming has been exhaustively studied ([2], [3], [8]) this section discusses the relation between the variant
of default logic proposed by Lukaszewicz and justified answer sets of logic programs. The definition of justified
extensions in [13] is based on fixed-points.

Definition 5.1 [13]Let A = (D, W) be a default theory. For any pair of sets of formulas (S,T), let @r,(S,T) be
the pair of smallest sets of formulas (S', T") such that

L wcgcs,

2.2.5 = Cn.(S),

3. Forany§ = aTB €D,if a €S and - & Cn_(SU{y}) foralln € T U{B},then y € S andPET.

A set E of formulas is a justified extension of A with respect to a set J of formulas iff @ B, (E,]) = (E,]).

Where Cn.(.) denotes the deductive closure in the sense of propositional logic. From [10], a logic program IT
can be transformed into a default theory by turning each rule r of form
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Po< D15 s Py NOL Py g 5 ooe notp,
in IT into the default rule
PN AP, AN Dyp1 A A Dy,
Po
We denote the default theory corresponding to I1 by A; = ({6, |r € II}, @). Here, we only consider default
theories such that W = g.

5, =

Now, at the level of fixed-points, we introduce the relationship between justified answer sets of a logic program
IT and the justified extension of the corresponding default theory A, as follows:

Theorem 5.1 Let IT be a logic program.
1. If (X,Y ) is a justified answer set of 1, then
(Cn_(X,Y )is a justified extension of Ay.
2. Every justified extension of Ay has the form
(Cn_(X,Y) for exactly one justified answer set(X,Y ) of IL

From Theorem 5.1, we have that there is a one-to-one correspondence between justified answer sets and
Lukaszewicz extensions.

For illustration, reconsider Program I, in (2). We have seen that I1; has ({b,c},{a}) as its unique justified

answer set, also its corresponding default theory Ay, = ({? ,C:C—ﬂa},ra) has Cn_({b,c}, {a}) as its unique
justified extension.
VI. Conclusion

In this work, we have elaborated upon the concept of justified answer sets, which is an extension of
1-answer sets [7]. The justified answer set defined by the fixed-points construction having a property, often
called semi-monotonicity in the context of default logic. Based on the concept of generating rules, we have
shown a one-to-one correspondence between justified answer sets and i-answer sets of logic programs. The
justified answer sets of a logic program amount to the Lukaszewicz (justified) extensions [13] of the default
theory corresponding to the program. Similar to justified extensions of default theories but different from
(standard) answer sets, every logic program has at least one justified answer set.

VII. Proofs
Proof 3.1 Let be a logic program and let X and X" be two sets of atoms.
suchthat X' € X
We have to prove that t;(X') £ 75(X). By
Definition 3.3, we have that 7;(X) = (Tp(X), Sp(X)). and
by Definition 3.2, we have that
SpuX) ={q|r €, body*™(r) €X,q€ body (r)andbody (r) Nn X = g}.
Since
Tp(X) = {head(r) |[r € I, body*(r) < Xandbody (r) n X = g}.
Then, we have that
T;(X) = ({head(r)|r €1, body*(r) S Xandbody (r) N X=g},=
{qlr €I, body*(r) €X,q€ body (r)andbody (r) N X =g})
And
;X)) = {(head(r)|r €11, body*(r) S X'andbody (r) N X =g},=
{qlr €11, body*(r) €X',q€ body (r)andbody (r) n X = g}).
Since X' € X then, we have that
{head(r)|r €11, body*(r) < X'andbody (r) N X = g}
C {head(r)|[r € I1,body™(r) S Xandbody (r) N X = g}
And
{qlr €N, body*(r) €X,q€ body (r)and body (r) n X = g}
Cc {qlr €ll,body*(r) €X,q€ body (r)and body (r) N X = g}
It is follows that T (X') € Ty (X) and S (X) € S (X).
Thus, 7;(X) £ 1,;(X).
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Proof 3.2 Let IT be a logic program and let X be set of atoms such that X = Cn*(IT), then X = Cn(I1*). Since
Ty (X) = {head(r) |[r €T, body*(r) < Xandbody (r) n X = g}, then we have that X = T(X) so X is
the least fixed point of T);.

By Definition 3.3, we have t; (X) = (T (X), Sy (X)) and by Theorem 3.1, operator tj; is monotonic, it has a
least fixed point and the second argument of Cn; (IT) determined by the first one. Then, we have that (X, Sy (X))

is the least fixed point of t;;. Thus t; (X) = (X, S (X)))) and we get that Cn; (1) = (X, S (X))

Proof 3.4 Let IT be a logic program and let X and Y be two sets of atoms. Let X = Cn*(I&*Y)) and Y =
S (X) then, we show that (X, Y) is the least fixed point of Ty . Since X = CnT(II*Y), then X is the
least fixed point of T, xv) and we have that X = U5 Tli] «y) (8). By Definition 3.3, we have that Ty (X) =
(Trxv) (X), Spexen (X)). So

(X, S”(X,Y)(X)) = [iso 7} (#). Since Y = S, vy (X) then, we have that (X, Y ) = [lis 75 ()

<=: Let (X,Y) is the least fixed point of 7,y then,we have to show that X = Cn*([1*'")) and Y =
Spxn(X). Since (X,Y) is the least fixed point of

Ty then (X,Y) =I5 ti(9). From Corollary 3.3, we have that Cn;(IT) = [l t;(#) and from
Theorem3.2, Cn]-(n(”)) = (X,S;an (X)) for X =CntI®"). So, we have that
X,Y) = (Cn* (1%N),S, o) (X)). ltsmean that X = Cn*(IT*) and ¥ = S0 (X).

Proof 3.6 Let IT and IT" be two logic programs such that II' € 1. Let X  be a justified answer set of IT" with

respect to Y. By Definition 3.4, X' = cnt (i ® )y and
Y = S”,(X'_y')(X ). such that

1. body*(I1'* ")y € ent (i1’ * ")) and

2 body~ (""" ncntar’® ")) = . , ,
We have to show that there exists a justified answer set X of IT with respecttoY suchthatX € XandY < Y.
Since, 7 ")cm c nisa sul;)sgt of IT that satisfies (1)and (2). As a consequence, there exists a pair of sets
of atoms (X,Y) such that 1'* ) c 1®Y and (1) and (2) hold for &Y. For such M*Y), let X =
Cnt (™)) andY = S, (X). Applying Definition 3.4, X is a justified answer set of IT with respect to . By
the (monotonicity) qf Cn™*, we also have
X =cenr@® )y cent(TUN) =X and Y = S o X) € Span() =Y.

Proof 3.8 Let IT be a logic program and let X be a set of atoms such that X is an answer set of I1. We define

Y = {qlr €ll, body*(r) €X,body (r) N X=gandq € body (r)}.

We have to prove that X is a justified answer set of IT with respect to Y.

Consider 7,; x,»)(U) = (T;(X_Y)(U), T wn (U)), where

Tg(x_y)(U) = {head(r)|r € T, body*(r) < Xand (U U{head(r)}) N (VU body~(r)) = ¢}
Th @y W) ={qlr enm,

bodyt(r) €X,q€ body (r),q € body (r) and (U U{head(r)}) n (VU body~ (1))
= g}

In view of Corollary 3.5, we have that (X,Y) = ;5 rli1 (@)
So, we prove that
a X =Ux T;lrl(x,y)(ﬁ) and
b. Y =U; Tgi(x,y)(fz’)-
We need lemma leading up to our proof.
Lemma 3.1 If head(r) € X, then the following conditions are equivalent:
(Dbody~(r) n X =g.
(ii)(X Ufhead(r)}) n (YU body (1)) = o.

Proof Since for any rule such that body*(r) < Xand body~(r) n X = g. We have that head(r) € X and
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body~—(r) €Y. From here, we get that X N Y = g, XU head(r) = Xand YUbody (r) =Y ,
So (X U{head(r)}) n (YU body~(r)) = @. Hence, proof of Lemma 3.1 is complete.

Now we return to our proof.
Proof a

Since, X is an answer set of II, then we have X = Cn(l1*) = U,x T} x(9), where T x(g) = () and
Té}l(g) =Ty x (T x(#)for all i >0. So, by induction on i and by Lemma 3.1 we get that T} x(8) =
7w (#) . Hence

X =Uix T;i(X.Y)(ﬂ)-

Now, we have to prove (b).

By induction on i, we have for alli >0, rgi(x,y)(ﬂ) C Y . This implies U;x rgi(x,y)(ﬂ) C Y . Assume that
EY.

Thus thereisaruler € Il such that body*(r) € X and

body~(r) n X =g. By (a), body™(r) < X implies

body*(r) € T;i(x,y)(ﬂ) forsomei = 0 3
Since, head(r) € T () S X. Then, by Lemma 3.1 body~(r) n X = g implies that
X Ufhead(r)}) n (YU body~(r)) =@ Q)

From (3) and (4), we immediately obtain
Q€ T un(®@ S UisTpun(@) . Thus,wehaveY S Uz 7w (8) .

We need the following lemmas before proving Theorem 4.1

Lemma 4.1 Let IT be a logic program and let X and Y be sets of atoms.
Then, Ry (X,Y) € T &),

Proof Letaruler € Isuchthatr € Ry (X, Y). Then,
body*(r) X and (XU{head(r)}) n (YU body~(r)) =g. It implies that » € 1Y), Thus we have
Ry(X,Y) € m&D,

Lemma4 .2 Let X and Y be sets of atoms. If Cn* (R (X, Y)) € X, then Cn* (1T X)) = Cn* (R (X, Y)).

Proof Let Cn*(R; (X, Y)) € X.
By Ry (X, Y) € 1T ™), we have Cn* (R (X,Y)) € Cn* (11 *).

We first show that Cn* (R (X,Y)) is closed under IT &Y Since, Cn* (1T *") is the smallest set being closed
under IT %Y then, we have that Cn* (IT ¥")) € Cn* (R (X, Y)) For this, we have to prove that for each

r € &Y sych that body™(r) < Cn*(Ry;(X,Y)), we have head(r) € Cn*(Ry(X,Y)). Let r € T sych
that body*(r) € Cn*(Ry;(X,Y)). Then, we have either

r e RpX,Y)orr ¢ Ry(X,Y). If r € R;(X,Y) then from Definition.5, we obtain two cases

Case 1: body™(r) € X or

Case 2: (X U{head(r)}) n (YU body~— (1)) + .

In case 1, we have body™* (r) ¢ Cn*(Ry(X,Y)), which is a contradiction. In case 2, we have r ¢ IT1*") but
this is a contradiction to » € I1 @), Therefore, letr € R;(X,Y). Then  head(r) € Cn*(R;(X,Y)) since
Cn*(R;(X,Y)) is closed under (R; (X,Y). Hence, Cn* (R; (X, Y)) is

closed under 1T *-"),

Thus, we have proven that X = Cn*(IT *) = ¢n*(R; (X, Y)).

Now, we are ready to prove Theorem 4.1.

Proof 4.1 Let X is a justified answer set of IT with respect to . Then X = Cn*(IT ) and Y = S« (X). We
have to show

(@)X = Cnt(R;(X,Y))and

(b)Y = body B(R;(X,Y)).
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Show (a): => From Lemma 41, we have Ry(X,Y)cHO%" By (monotonicity),
Cn* (M%) € Cn* (R (X, Y)). Then, Cn*(R;(X,Y)) S X, so that by applying Lemma 4.2, we conclude that
X = Cnt(M®N) = Cn*(R; (X, Y)).

<=: Follows directly by using Lemma4.2.

Show (b): From Definition3.2, we have
Sy (X) ={q|r e01*Y body*(r) €X,q€ body (r)}

={q|r e0*Y body*(r) X, (XU{head(r)}) n (YU body (r)) =wq
€ body~(r)}
={q|r €ER;XY),q € body (r)}
= body~(r) (R (X, Y))

ByY = S« (X), we obtain Y = body~(r)(Ry (X, Y)).

Proof 4.2 Let I be a logic program and let X and Y be two sets of atoms.
"=>": Let X be a justified answer set of IT with respect to Y and IT' = R;(X,Y) . By Theorem 4.9, we have
X = Cn*(Ry(X,Y)) = Cn*(IT) and Y = body B(R;(X,Y)) = body~(IT'). We have to show that for
eachr € Il

1. Ifr € IT,then body*(r) < Xand (X U{head(r)}) n (YU body~(r)) = o.

2. Ifr & II',then body*(r) € Xor(X U{head(r)}) n (YU body~ (1)) # o.
Let r € II, then by Definition 4.1, we have r € IT if and only if body*(r) < X and (X U{head(r)}) n
(YU body~—(r)) = @. Thus, the two conditions (1) and (2) hold.

<=":Letll',X= Cn*(II') andY = body~(IT") such that for eachr € II:
1. Ifr € II',then body*(r) < Xand (XU{head(r)}) n (YU body~(r)) = 0.
2. 2.Ifr ¢ II,then body*(r) & Xor
(X U{head(r)}) n (YU body~(r)) # o

We have to show Xis a justified answer set of IT with respect to Y . Since for eachr € I, we have
body*(r) <Xand (XU{head(r)}) n (YU body~(r)) = @. It implies
' =Ry (X,Y). Thus,we have X = Cn*(R;(X,Y)) = Cn*(IT") andY = body B(Ry(X,Y)) = body(IT).
Hence, by Theorem 4.1, we obtain X is a justified answer set of IT with respectto Y .

Proof 4.3 Let I1 be a logic program and X be a set of atoms.
=>": Let X be a justified answer set of I1. Consider IT" = Ry (X, Y). First, we have to show that
1. body*(II') < cn*(l)
2. body=(II) ncn*(l') = g.

From Theorem 4.1, we have X = Cn*(IT') and Y = body—(II'). By Definition 4.1, we have for each
r € I, then body*(r) < X and (X Uthead(r)}) n (YU body~ (r)) =g.
Thus, we obtain for each € IT' body~ (NNX=pByX= Cn*(I1"), we have body*(II') < Cn*(IT') and
body~=(IT'") nCn*(Il') = @. Hence, IT" satisfies the two conditions (1) and (2).
Second, we show that IT' = R; (X, Y) is maximal. Assume that 7" is not maximal satisfying the conditions

1. body*(II') < cn*(l)

2. body=(II') nCn*(l') =g.
That is, there is a strict superset /1" for which the above conditions (1) and (2) holdand X = Cn*(I1").
Hence, we have body~(I") NnCn*(II") =@. Since I <11 then, there is a rule r" € II" such that
body*(I1") € Cn*(I1" ) and body~(II") nCn*(II") = ¢. Sincer” & Il = R;(X,Y), then by Definition
4.5, we have two cases

1: body*(II") & Cn*(l")

2: (X Ufhead(r")}) n (YU body~(r")) # g.
In case 1, we obtain body*(II") & Cn*(IT") which is a contradiction to body*(I1") < Cn*(Il"). Since for
each r €I, we have body*(II') € Cn*(II') and body=(IT') nCn*(l") =@. This implies
head(r') € X = Cn*(I1").). Then, we have X U{head(r')}=Cn*(I") . This, in case 2, we have
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Cnt(I1") n (YU body=(r")) = @, but this is a contradiction to body=(IT') nCn*(lI") =@, and Y N
Cn*(1") = g ,where Y = body~(IT"). Hence, IT is a maximal set with the desired properties.

"<=":letX = Cn*(II')andY = body~(IT") for some maximal
II' € I such that body*(IT') € Cn*(IT) and body—(IT'") N Cn*(IT'") = 3. We have to show that X is a
justified answer set of IT with respect to . For this it is sufficient to prove that IT* satisfies the two conditions (1)
and (2) of Theorem 4.2. That is,

1. Ifr € II,then body*(r) < Xand (X U{head(r)}) n (YU body~(r)) = o.

2. Ifr & II',then body*(r) € Xor(X U{head(r)}) n (YU body~ (1)) # o.
We assume that the two conditions (1) and (2) of Theorem 4.2 is not satisfied. Then, there is some r € IT such
that

(a) body™(r) ¢ X

(b) X U{head(r)}) n (YU body~(r)) # @.
In case (a), we have body*(r) € X = Cn*(II') which is a contradiction to ody*(r) € Cn*(IT') . Since for
each
r € IT', we have body*(r) <X and body~(r) NX = g@. This implies head(r) € X = Cn*(II'). Then, we
have X U head(r) = Cn*(IT"). Thus in case (b), we have
Cn*t(1') n (YU body~(r)) # ¢. But this is a contradiction to body (II') NnCn*(II') =@, where
body~(r)) €Y = body~(I') . Therefore, condition (1) of Theorem 4.2 is satisfied.
Now, we assume that the condition (2) of Theorem 4.2, is not satisfied. Then, there is some r ¢ IT' such that
body*(r) <Xand (XU{head(r)}) n (YU body~(r)) = @. Thus, by
Definition 4.1, we obtain € Ry (X,Y). Then r € IT', because otherwise IT'would not be a maximal subset of
I1. But this is a contradiction to r & IT". Hence, the condition (2) of Theorem 4.3, is satisfied.
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