
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 7, Issue 4 (Nov-Dec. 2012), PP 31-39
www.iosrjournals.org

www.iosrjournals.org 31 | Page

 A comprehensive method for discovering the maximal frequent

set

1
Nivedita Pandey,

2
Prof. Love Verma

1,2Department of Computer Science & Engineering Raipur Institute of Technology. , Raipur, Chhattisgarh

Abstract: The association rule mining can be divided into two steps.The first step is to find out all frequent

itemsets, whose occurrences are greater than or equal to the user-specified threshold.The second step is

to generate reliable association rules based on all frequent itemsets found in the first step. Identifying all

frequent itemsets in a large database dominates the overall performance in the association rule mining. In

this paper, we propose an efficient method, INCREMENTAL PINCER, for discovering the maximal frequent

itemsets. The INCREMENTAL PINCER method combines the advantages of both the DHP and the

Pincer-Search algorithms. The combination leads to two advantages. First, the INCREMENTAL PINCER

method, in general, can reduce the number of database scans. Second, the INCREMENTAL PINCER can filter

the infrequent candidate itemsets and can use the filtered itemsets to find the maximal frequent itemsets. These

two advantages can reduce the overall computing time of finding the maximal frequent itemsets. In

addition, the INCREMENTAL PINCER method also provides an efficient mechanism to construct the

maximal frequent candidate itemsets to reduce the search space.

Keyterms: association rules, data mining, frequent itemsets, the INCREMENTAL PINCER method

I. Introduction
 The process of mining association rules can be decomposed into two steps [13]. The first step is

to find out all frequent itemsets, whose occurrences are greater than or equal to the user- specified threshold.

The second step is to generate reliable association rules based on all frequent itemsets found in the first

step.The cost of the first step is much more expensive than the second step. Therefore, much research

focused on developing efficient algorithms for finding frequent itemsets. A well-known Apriori algorithm

proposed by R. Agrawal and R. Sriank [13] was the first efficient method to find the frequent itemsets. The

main contribution of the Apriori algorithm is it utilizes the downward closure property, i.e., any superset
of an infrequent itemset must be an infrequent itemset, to efficiently generate candidate itemsets for the next

database scan. By canning a database k times, the Apriori algorithm can find all frequent itemsets of a database,

where k is the length of the longest frequent itemset in the database. Many methods based on the Apriori

algorithm have been proposed in the literature. In general, they can be classified into three categories,

reduce the number of candidate itemsets, reduce the number of database scans,and the combination of

bottom-up and top-down search. Reduce the number of candidate itemsets: Methods in this category try

to Generate a small number of candidate itemsets efficiently in order to reduce the computational cost.The

hash-based algorithm DHP proposed by Park et al. [6] is an example. The main contribution of the DHP

algorithm is it uses a hash table to filter the huge infrequent candidate itemsets before the next

database scan. However, the DHP algorithm needs to perform database scans as many times as the length

of the longest frequent itemset in a database. Reduce the number of database scans: Scanning a database
iteratively is time consuming. Thus, methods in this category try to reduce database scans aim at reducing

disk I/O costs. The Partition algorithm proposed by Savasere et al. [1] generates all frequent itemsets

with two database scans. The Partition algorithm divides the database into several blocks such that each

block in the database can be fitted into the main memory and can be processed by the Apriori algorithm.

However, the Partition algorithm examines much more candidate itemsets than the Apriori

algorithm.Brin et al. [17] proposed the DIC algorithm that also divides the database into several

blocks like the Partition algorithm. Unlike the Apriori algorithm, once some frequent itemsets are obtained,

the DIC algorithm can generate the candidate itemsets in different blocks and then add them to count for the

rest blocks. However, the DIC algorithm is very sensitive to the datadistribution of a database.

The combination of bottom-up and top- down search: Methods in this category are also based on the downward

closure. They obtain the frequent itemsets from the bottom-up direction like the

Apriori algorithm. In the mean time, they use the infrequent itemsets found in the
bottom-up direction to split the maximal frequent candidate itemsets in the top- down direction in each round.

The advantage is that once the maximal frequent itemsets are obtained, all subsets of the

maximal frequent itemsets arealso identified. Therefore, all subsets of the maximal frequent itemsets do

not need to examine from the bottom-up direction. Without the top-down pruning, they need to scan

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 32 | Page

Transaction Items

1 A, C, D

2 B, C, E, F

3 A, B, C, E, F

4 B, E

5 A, C, F

Support Itemsets
2 AF, BC, BF, CE, EF, ACF, BCE, BCF, CEF, BCEF

3 A, B, E, F, AC, BE, CF

4 C

database as many times as the length of the longest frequent itemset.However, the improvement is not clear

when the length of the longest frequent itemset is relatively short. The Pincer-Search algorithm proposed by

D. Lin et al. [2] and the MaxMiner algorithm proposed by R.J. Bayardo [6] are two examples. In these
two methods, the generation of the maximal frequent candidate itemsets is not efficient. They may spend a lot

of time on finding the maximal frequent itemsets. In this paper,we propose an efficient method,

INCREMENTAL PINCER, to generate the maximal frequent itemsets in the category of the combination of

bottom-up and top-down search. The proposed method combines the advantages of both the DHP and the

Pincer- Search algorithms.Unlike the DHP algorithm, the

II. Incremental Pincer
 method is very efficient in reducing the number of database scans when the length of the longest

frequent itemset is relatively long. Unlike the Pincer- Search algorithm, the INCREMENTAL PINCER method
can filter the infrequent itemsets with the hash technique from the bottom-up direction and then can use

the filtered itemsets to find the maximal frequent itemsets in the top-down direction. In

addition, the

INCREMENTAL PINCER method also provides an efficient mechanism to construct the maximal frequent

candidate itemsets.

Table 1: Database D.

Table 2: All frequent itemsets (the minimum support = 40%).

III. Related Algorithms
Many methods have been proposed to determine all frequent itemsets in the association rule mining [2,

3, 4, 6, 8, 9, 14, 15, 17]. Since our method combines the advantages of the DHP and Pincer-Search

algorithms, in this section, we briefly describe the Apriori, the DHP, and the Pincer-Search algorithms.

2.1 The Apriori Algorithm

The Apriori algorithm is given as follows.

Algorithm Apriori()
1. Scan D to obtain L1, the set of frequent 1- itemsets;

2. for (k = 2; Lk-1 Ø; k++) do

3. Ck = apriori-gen(Lk-1); // Generate new candidates from Lk-1

4. for all transactions t D do

5. Ct = subset(Ck, t); // Candidates contained in t

6. for all c Ct do

7. c. count++;

8. Lk = {c Ck | c. count minimum support};

9. All frequent itemsets = kLk; end_of_Apriori

In the first round, the Apriori algorithm scans the database to determine L1 (line 1). In the kth round, where
k 2, the process of the Apriori algorithm can be divided into the following three steps. Step 1. Line 3 constructs

Ck from Lk-1, th Step 3. Line 9 determines the Lk, whose support is greater than or equal to the user-

specified minimum support, from Ck. The algorithm terminates when no more candidate itemsets can be

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 33 | Page

constructed for next round. The algorithm needs to do multiple database scans as many times as the

length of the longest frequent itemset. Therefore, its performance decreases which was determined in the (k-1)

round. dramatically when the length of the longest
Step 2. Lines 4-7 scan the database to count the support of each k-itemset in Ck.

2.2 The DHP Algorithm

The DHP algorithm is given as follows. //Step 1 of the DHP algorithm

Function build_hash_table()

1. Initialize all hash buckets in the hash table H2 to zero;

2. for all transactions t D do

3. Insert and count the supports of all 1- itemsets in a hash tree;

4. for all 2-item subsets x of t do

5. H2[h2(x)]++;

6. L1 = {c | c. count minimum support, c is in the hash tree};
end_of_build_hash_table //Step 2 of the DHP algorithm

Function gen_candidate(L1, H2, C2)

1. C2 = L1 L1 = {X Y | X, Y L1}

2. for all 2-itemsets c C2 do

3. if H2[h2(c)] the minimum support then C2 = C2 {c} end_of_gen_candidate

In the Apriori algorithm, it actually counts the support of every itemset in Ck by scanning the database in

each round. The main contribution of the DHP algorithm is that it filters the infrequent itemsets in Ck by

using the hash technique and then counts the support of frequent itemset is relatively long. every unfiltered

itemset in Ck. Since the number of the itemsets in Ck is decreased substantially for next database scan,

the overall performance is improved. The process of the DHP algorithm can be divided into two steps. In step

1, function build_hash_table() identifies L1 and builds a hash table H2 in the first database scan. The

hash table H2 is built by determining the hash value of each 2- item subset of each transaction by a hash
function h2, and then add 1to the corresponding hash bucket. In step 2, function gen_candidate()

generates C2 and checks each 2-itemset in C2 according to the value of the corresponding hash bucket in

H2. If the value of the corresponding hash bucket is smaller than the minimum support, this 2- itemset is an

infrequent itemset and its support does not need to be counted in next database scan. An example of the

construction of the hash table and the generation of C2 is shown in Figure 1. Like the Apriori algorithm, the

DHP algorithm needs to scan a database as many times as the length of the longest frequent itemset.It

is inefficient if the length of the longest frequent itemset is long.

h({x, y}) = ((order of x)*10 + (order of y)) mod 7

Figure 1: An example of the construction of the hash table and the generation of the C2.

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 34 | Page

3.3 The Pincer-Search Algorithm

The Pincer-Search algorithm is given as follows. Algorithm Pincer-Search (){

1. C1 = {all distinct 1-itemsets in D};

2. n = the number of 1-itemsets in C1;

3. MFCS = {n-itemset}; //the set of maximal frequent candidate itemsets

4. MFS = ; //the set of maximal frequent itemsets

5. k = 1; //pass

6. while Ck do

7. Scan the database and count the supports for MFCS and Ck;

8. MFS = MFS {frequent itemsets inMFCS};

9. Lk = {frequent itemsets in Ck} {subsets of MFS};

10. Sk = {infrequent itemsets in Ck};

11. if Sk then call MFCS_gen();
12. Ck+1 = Lk Lk;

13. if any frequent itemset in Lk was removed then call recover() to recover Ck+1;

14. for all itemsets c Ck+1 do

15. if c any element in MFCS then remove c from Ck+1; The Pincer-Search algorithm can be divided into two

steps in each round. In step 1, line 7 scans a database to count the supports of all itemsets in

MFCS and Ck in the bottom-up and top-down directions. In step 2, lines 9-10 classify all

itemsets in Ck into two groups, frequent and infrequent, in the bottom-up direction. The group

that contains all frequent itemsets is Lk. The other group that

16. k = k+1;

17. return MFS;

end_of_Pincer-Searchfunction MFCS_gen(){

1. for all itemsets s Sk do
2. for all itemsets m MFCS do

3. if s m then

4. MFCS = MFCS {m};

5. for all items e itemset s

6. if m {e} is not a subset of any itemset in MFCS then

7. MFCS = MFCS {m {e}};

8. return MFCS;

end_of_ MFCS_gen function recover(){

1. for all itemset l Lk do

2. for all itemsets m MFS do

3. if the first k-1 items in l are also in m then
4. for i form j+1 to |m| do

5. Ck +1 = Ck +1{l.item1, l.item2, …, l.itemk, m.itemi};

end_of_recover

contains all infrequent itemsets will be used to split the maximal frequent candidate itemsets in MFCS in the

top-down direction (function MFCS_gen()). The algorithm will be terminated when there are no

itemsets in MFCS.

The Pincer-Search algorithm also uses the downward closure. The downward closure consists of two

properties.The first property is that all supersets of the infrequent itemsets must also be infrequent. This

property is used in many typical bottom-up algorithms of the association rule mining, such as the Apriori

algorithm. The second property is that all subsets of a frequent itemsets must also be frequent. This property

can be used in a top-down algorithm of the association rule mining. The Pincer-Search algorithm is

very efficient when the length of the longest frequent itemset of a database is long. However, its disadvantage
is that the initialization of the maximal frequent candidate set is not efficient. It may spend a lot of time on

finding the set of maximal frequent itemsets. Given the database shown in Table 1 as an example, we have C1

={A, B, C, D, E, F} and the set of maximal frequent candidate itemsets MFCS = {ABCDEF}.After the

first round, the infrequent 1-itemset is D, and MFCS becomes {ABCEF}. Assume that AB and AE are

infrequent 2-itemsets in the second round. Consider the 2-item subset AB in ABCEF,

{ABCEF} will be split into {BCEF, ACEF}. Consider the 2-item subset AE in ACEF, the {ACEF} will

be split into {CEF, ACF}. Thus,

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 35 | Page

Algorithm INCREMENTAL PINCER()

1. In the first round, scan the database D to count the support of all 1 itemsets and build a hash table H2;

2. C2 is filtered by the H2;
3. call construct_maximal_frequent_candidate_itemsets (C2, H2);

4. In the second round, divide the database into several blocks;

5. for all blocks b D do

6. Count the supports of itemsets in C2 and MFCS;

7. call process_collision(C2, H2) to process the collisions of the hash bucket;

8. Move the maximal frequent itemsets from MFCS to the hash tree;

9. Apply the Pincer-Search algorithm to the rest of rounds; end_of_algorithm

Function construct_maximal_frequent_candidate_itemsets(C2, H2)

1. Cmax = {x = x1x2x3….xn | x1x2, x1x3, x1xn C2, where n > 2};

2. m = 3; MFCS = ;
3. for all x = x1x2x3…xn Cmax do

4. Push x into the stack initially;

5. while the stack is not empty do

6. Popup an element x from the stack;

7. while m n do after the second round, MFCS in the top-down direction would be {BCEF, ACF}.

IV. The Incremental Pincer Method
Our method, INCREMENTAL PINCER, combines the advantages of both the DHP and Pincer-

Search algorithms. In the INCREMENTAL PINCER method, it uses the hash technique of the DHP
algorithm to filter the infrequent itemsets in the bottom-up direction.Then it uses a top-down technique

that is similar to the Pincer-Search algorithm to find the maximal frequent itemsets.The main fference

of the top-down techniques between the INCREMENTAL PINCER method and the Pincer-Search

algorithm is that the INCREMENTAL PINCER method provides a more efficient mechanism to initialize

the set of maximal frequent candidate itemsets than that of the Pincer-Search algorithm. By combining the

advantages of the DHP and Pincer-Search algorithms, the number of database scan and the search space of items

can be reduced. The algorithm of the INCREMENTAL PINCER method is given as follows

8. k = h2(xixm), for i = 2, 3,…, m 1;

9. if (H2(k) < minimum support) then

10. Split x1x2x3….xn into two (n-1)- itemsets, x1x2x3…xi…xm-1xm+1…xn and x1x2x3…xi-

1xi+1…xmxm+1…xn;
11. if is_maximal_candidate_itemset(x1x2x3…xi-1xi+1…xmxm+1…xn)= true then push x1x2x3…xi-

1xi+1…xmxm+1…xn into the stack;

12. else discard x1x2x3…xi-1xi+1…xmxm+1…xn;

13 ifis_maximal_candidate_itemset(x1x2x3…xi…xm-1xm+1…xn) = true

14. then continue processing x1x2x3…xi…xm-1xm+1…xn;

15. m = m+1;

16. else x1x2x3…xi…xm-1xm+1…xn is discarded;

17. break;

18. if (m = n and the length of x > 2) then MFCS= MFCS + {x};

19. return MFCS; end_of_construct_maximal_frequent_candidate_i temsets

Function is_maximal_candidate_itemset(itemsetx){
1. for all itemset s in the stack do

2. if all items in x are also in s then return false;

3. else return true;end_of_is_maximal_candidate_itemset

Function process_collision(C2, H2)

1. for all blocks bD do

2. for all H2(k) minimum support do

3. for all ci C2 that hashed into H2(k), where i = 1, 2,…, n don

5. then use the infrequent 2-itemset cj mto split itemsets in MFCS;

4. Remove the infrequent 2- itemset cj from C2;end_of_ process_collision

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 36 | Page

4. if (H 2 (k) support (ci) support

(c j) minimum support, j 1,2,...,n)
i 1

In algorithm INCREMENTAL PINCER(), lines 1-2 use the hash technique to filter the infrequent itemsets in

C2 in the bottom-up direction. Line 3 constructs the set of maximal frequent candidate itemsets MFCS.

Line 6 counts the supports of itemsets in MFCS and C2. Line 7 splits the maximal frequent

candidate itemsets if some conditions are satisfied. Line 8 moves the maximal frequent itemsets from

MFCS to the hash tree. Line 9 performs the Pincer-Search algorithm to get the maximal frequent itemsets.

We first explain how function construct_maximal_grequent_candidate_itemset s() works. Line 1

constructs Cmax with all 2-itemsets that have the same first item in C2. Lines 3-19 generate the set of

maximal frequent candidate itemsets, MFCS. The generation process is as follows. Assume that an

itemset x in Cmax is denoted as x1x2x3…xn. Consider the first m items in x1x2x3….xn, for m = 3, …,
n, and examine the 2-item subset xixm of x, for i = 2, 3,…, m 1. If the number of 2-itemsets in

the corresponding hash bucket of xixm is smaller than minimum support, i.e., xixm is not in C2,

splitx1x2x3….xn into x1x2x3…xi…xm- 1xm+1…xn and x1x2x3…xi-xi+1…xmxm+1…xn. Itemsets

x1x2x3…xi…xm-1xm+1…xn and x1x2x3…xi-1xi+1…xmxm+1…xn are then compared with elements in the

stack. We have the following four cases. Case 1. All items in x1x2x3…xi…xm-1xm+1…xnandx1x2x3…xi-

1xi+1…xmxm+1…xn are also in any element in the stack. Bothx1x2x3…xi…xm-1xm+1…xn

andx1x2x3…xi-1xi+1…xmxm+1…xn are discarded. An itemset is popped up from the stack and the

generation process continues.Case 2.Only items in x1x2x3…xi…xm-1xm+1…xn are also in any element

in thestack.Itemset x1x2x3…xi…xm-1xm+1…xn is discarded.The generation process continues to examine

xi+1xm of x1x2x3…xi-1xi+1…xmxm+1…xn.Case 3.Only items in x1x2x3…xi-1xi+1…xmxm+1…xn are

also in any element in the stack. Itemset x1x2x3…xi-1xi+1…xmxm+1…xn is discarded. Thegeneration process

continues to examine the xixm+1 of x1x2x3…xi…xm-1xm+1…xn.Case 4.Otherwise, itemset x1x2x3…xi-
1xi+1…xmxm+1…xn is pushed into the stack and the generation process continues toexamine xixm+1

of x1x2x3…xi…xm-1xm+1…xn.The generation process is continuing until m = n.Then we get a maximal

frequent candidate itemset. Once one maximal frequent candidate itemset is generated, one of the

itemsets in the stack is popped up and the generation process is applied until the stack is empty.An example of

the generation process is shown in Figure 2.Let C2 = {AB, AC, AD, AE, AF, BC, BF, CD, CE, CF}.Cmax

is{ABCDEF}. Consider the first 3 items ABC in ABCDEF.Since BC is in C2, we examine ABCD in

ABCDEF.Since BD is not in C2, ABCDEF is split into ABCEF and ACDEF. Compare ABCEF and ACDEF

with elements in the stack, we have case 4. ACDEF is pushed into the stack and the generation

process is continuing on ABCEF. Since BE is not in C2, ABCEF is split into ABCF and ACEF. Compare

ABCF and ACEF with elements in the stack, we have case 2. ACEF is discarded. A maximal frequent

candidate itemset, ABCF, is obtained. Since the stack is not empty, itemset ACDEF is popped up from
the stack and the generation process continues in a similar manner.Finally,allmaximal frequent candidate

itemsets, ABCF, ACD, and ACE are generated form ABCDE

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 37 | Page

In INCREMENTAL PINCER method, the collision of the hash buckets cannot be avoided by using the hash

technique.The collision may result in an infrequent itemset be used to construct the maximal frequent candidate
itemsets. For example, assume that C2 = {AB, AC, AD, AE, AF, BC, BF, CD, CE, CF} is given. One of the

maximal frequent candidate itemsets of C2 is ABCF. Assume that AC, a frequent itemset, and AF, an

infrequent itemset, are hashed into bucket2. Since AC and AF are in the same bucket, AF cannot be filtered and

will be used to construct the maximal frequent candidate itemsets.Function process_collision() provides a

solution of this problem.In the following, we explain how it works.First, it divides the database into several

blocks. In the second round, the supports of elements in C2 and MFCS are counted.The number of 2-

itemsets hashed into bucket k in H2 is denoted as H2(k).Assume that there are n 2- itemsets, c1, c2,…, cn, in

C2, are hashed into bucket k. An infrequent itemset cj can be identified by the following equation:n

H 2 (k) support (ci) support (c j)

minimum support, j 1,2,...,n , (1)i 1

where the supports of ci and cj among the k blocks are denoted as support(ci) and support(cj), respectively.
Ineach block scanning, all infrequent itemsets in C2are identified and are deleted from C2.The

identified infrequent itemsets are used to split itemsets in MFCS as well.We now give an example to explain

Equation (1). Assume that H2(k) is 100 and the minimum support is 50. After scanning several blocks

in the database, support(AC) is 70 and support(AF) is 10. By applying Equation (1), 100

(70+10)+10 = 30 < the minimum support. Thus, we can identify AF is an infrequent itemset and AF can be

discarded. The purpose of dividing a database into several blocks is that some infrequent itemsets in C2 may

be determined earlier when some blocks are scanned.The maximal frequent candidate itemsets that contain

these infrequent itemsets cannot be counted further. Therefore, the division may lead us to identify those

maximal frequent candidate itemsets that contain infrequent itemsets earlier and reduce the time of finding

the maximal frequent itemsets.

V. Experimental Results
To evaluate the performance of the proposed method, we have implemented the INCREMENTAL

PINCER method in VB.NET language along with the DHP and the Pincer-Search algorithms on a Pentium III

800 MHz PC with 512MB of main memory. The program designed by IBM Almaden Research Center is used

to generate synthetic databases [5]. This program has been widely used by many researchers [1, 2,6, 7, 8, 9, 12,

14, 17].By setting up parameters of the program, we can generate desired databases as benchmarks to evaluate

the performance of our method. Table 3 shows the meanings of all parameters used in the program. In our

experiments, we set N = 1000 and L = 2000. Table 4 shows the values of other parameters, T, D and I. The

number of the hash buckets is500,000. We designed two tests. In the first test, we compare the relative

performance and the number of database scans for the three algorithms on five databases shown in Table 4.
The results of the first test are shown in Figure

3 and Figure 4.

Figure 3 shows the execution time of these three algorithms for test databases with various

 minimum supports. In Figure 3, our method is a little slower than the DHP algorithm on

T10I4D100K when the minimum support is 1%. In this case, the execution time of the DHP algorithm

and the INCREMENTAL PINCER method are 4 and 6 seconds, respectively. The reason is that the length of

the longest itemset is two for T10I4D100K when the minimum support is 1%, i.e., only two database scans are

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 38 | Page

required for T10I4D100K. The INCREMENTAL PINCER method and the DHP algorithm all required

two database scans.However, the INCREMENTAL PINCERmethod needs to spend some time on

constructing the maximal frequent candidate itemsets based on C2. Therefore, it takes more time than the
DHP algorithm.For other test cases, the INCREMENTALPINCER method outperforms the DHP and the Pincer-

Search algorithms.The summary reasons are given as follows.1.In contrast with the DHP algorithm, the

INCREMENTAL PINCER method finds the frequent itemsets not only in the bottom-up direction but

also in the top-down direction. The execution time is improved since the number of database scans is

reduced. The number of database scans is shown in Figure 4. The number of database scans required by the

DHP algorithm is the length of the longest frequent itemset. In general, the number of database

scans of the INCREMENTAL PINCER method is half of that of the DHP algorithm when the minimum support

= 0.25% and 0.5%.

2.In contrast with the Pincer-Search algorithm, the INCREMENTAL PINCER method still has

better performance than the Pincer-Search algorithm even though the number of database scans required by

the INCREMENTAL PINCER method is the same as the Pincer-Search algorithm. There are two reasons. First,
the INCREMENTAL PINCER method uses the hash table to filter the huge infrequent 2-itemsets in the

C2 instead of actually counting the supports of all 2-itemsets. Second, it constructs the maximal frequent

candidate itemsets by using the hash technique instead of the combination of all distinct 1-itemsets in

a database.The search space is reduced substantiallyIn the second test, we evaluate the performance of the

INCREMENTAL PINCER method and the DHP algorithm on the test databases with various database

sizes. The results of the second test are shown in Figure 5. The performance of the Pincer-Search

algorithm is not included since it takes too much time to get the execution results for test databases. In Figure

5, the number of transactions in the test databases is set from 100K to 500K and the minimum support is

0.75%. From Figure 5, we can see that both the execution time of INCREMENTAL PINCER and DHP

increases when the number of transactions increases. However, the execution time of the DHP algorithm is

near linear to the size of test databases. The INCREMENTAL PINCER method is not so sensitive to

the size of a database compared to the DHPalgorithm

 A comprehensive method for discovering the maximal frequent set

www.iosrjournals.org 39 | Page

VI. Conclusions
In this paper, we have proposed an efficient hash-based method, INCREMENTAL PINCER, for

discovering the maximal frequent itemsets. The method combines the advantages of the DHP and the

Pincer-Search algorithms. The combination leads to two advantages. First, the INCREMENTAL

PINCERmethod, in general, can reduce the number of database scans. Second, the INCREMENTAL

PINCER method can filter the infrequent itemsets and can use the filtered itemsets to find the

maximal frequent itemsets.In addition, an efficient mechanism to construct the maximal frequent candidate

itemsets is provided. The experimental results show that our method has better performance than the

DHP and the Pincer-Search algorithms for most of test cases. In particular, our method has significant

improvement over the DHP and the Pincer- Search algorithms when the size of a database is large and the length

of the longest itemset is relative long.

Reference
[1] A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient Algorithm for Mining Association Rules in Large Databases", In

Proceedings of 21st VLDB, pp. 432-444, 1995. [2] D. Lin and Z. M. Kedem, "Pincer-Search: A New lgorithm for

Discovering the Maximum Frequent Set", In Proceedings of VI Intl. Conference on Extending Database Technology, 1998.

[2] Eui-Hong Han, George Karypis and Vipin Kumar, “Scalable Parallel Data Mining for Association Rules”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 12, No. 3, MAY/JUNE 2000.

[3] H.Toivonen,“Sampling Large Databases for Association Rules”, VLDB, pp.134-145, 1996.

[4] IBMQuest Data Mining Project, “Quest Synthetic Data Generation Code”, “http”//www.almaden.ibm. com/cs/quest/syndata.

html”, 1996

[5] J. S. Park, M. S. Chen, and P. S. Yu, "An Effective Hash Based Algorithm for Mining Association Rules", Proceedings of the ACM

SIGMOD, pp. 175-186, 1995.

[6] M. Houtsma and A. Swami, “Set-Oriented Mining of Association Rules in Relational Databases,” 11th Int’l Conference on Data

Engineer, 1995.

[7] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "New Algorithms for Fast Discovery of Association Rules", 3rd Int’l

Conference on Knowledge Discovery & Data Mining (KDD), Newport, CA, August 1997.

[8] MohammedJ.Zaki, “Scalable Algorithm for Association Mining”, IEEE Transactions on Knowledge and Data Engineering, Vol.

12, No. 3, MAY/JUNE2000.

[9] M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from a Database Perspective”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 8, No. 6, December 1996.

[10] M. S. Chen, J. S. Park, and P. S. Yu, "Efficient Data Mining for Path Traversal Patterns", IEEE Transactions on Knowledge and

Data Engineering, Vol. 10, No. 2, 1998, pp. 209-220.

[11] R. Agrawal, T. Imilienski, and A. Swami, "Mining Association Rules between Sets of Items in Large Databases", In

Proceedings of the ACM SIGMOD Int’l Conference on Management of Data, pp. 207-216, May 1993.

[12] R. Agrawal and R. Srikant, "Fast Algorithm for Mining Association Rules in Large Databases", In Proceedings of 1994

[13] Int’l Conference on VLDB, pp. 487-499, Santiago, Chile, Sep. 1994.

[14] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo, “Fast Discovery of Association Rules,”

Advances in Knowledge Discovery and Data Mining, U. Fayyad and et al., eds., pp. 307-328, Menlo Park, Calif.: AAAI

Press,1996.

[15] R. Agrawal and J. Shafer, “Parallel Mining of Association Rules,” IEEE Transactionson

Knowledge and Data Engineering. , Vol. 8, No. 6, pp. 962-969, Dec.1996.

[16] R. J. Bayardo Jr., "Efficiently Mining Long Patterns from Databases", In Proceedings of the ACM

SIGMOD Conference on Management of Data, pp. 85-93, Seattle, Washington, June 1998.

[17] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic Itemset Counting and Implication Rules for Market Basket

Data",1997ACM SIGMOD Conference on Management of Data, pp. 255-264, 1997.

