IOSR Journal of Computer Engineering (IOSRJCE)
ISSN: 2278-0661 Volume 2, Issue 2 (July-Aug. 2012), PP 09-17
www.iosrjournals.org

ASIC implementation of STM-1 Framer and De-Framer

Anand T*, Dr. Siva S Yellampalli?
L2(VLSI Design and Embedded System, VTU Extn. Centre, UTL Technologies, INDIA)

Abstract : In this paper we present the ASIC implementation of STM-1 Framer and De-Framer. This paper
mainly focuses on multiplexing digital data, transmitting and receiving the STM-1 frame. The design is
implemented using Verilog HDL, simulated on Modelsim and Synthesized on Xilinx ISE 13.2. For power
analysis and area calculation, the designed framer and de-framer are analysed using Cadence version 6.1.5.
For debugging Chipscope Analyser has been used. The designed framer can be used for generation and analysis
of STM-1 frame that has a data rate of 155.52Mbps.

Keywords - PRBS, STM-1 frame, Scrambler, Descrambler, BIP, SOH, POH.

l. INTRODUCTION

The SDH is a hierarchical set of digital transport structures, standardized for the transport of suitably
adapted payloads over physical transmission networks. The SDH defines a structure which enables
plesiochronous signals to be combined together and encapsulated within a standard SDH signal. The ITU-T
recommendations define a number of transmission rates within the SDH. The first of these is 155.52 Mbit/s,
normally referred to as STM-1 (where STM stands for ‘Synchronous Transport Module’) [1]. The
recommendations also defines a multiplexing structure whereby an STM-1 signal can carry a number of lower
bit rate signals as payload, thus allowing existing PDH signals to be carried over a synchronous network. The
SDH defines a number of “containers” each corresponding to an existing plesiochronous rate. Information from
the plesiochronous container is mapped into the relevant container. The way in which this is done is similar to
the bit stuffing procedure carried out in a conventional PDH multiplexer. SDH is currently the dominant choice
for metropolitan-area networks as well as for accessing wavelength division multiplexing networks in wide-area
networks [7]. The purpose of this paper is to carry multiple digital signals on a single medium. The paper also
describes whether the data that is transmitted is received correctly or not. The STM-1 frame is capable of
transporting any PDH tributary signal (< 140 Mbit/s). The frame comprises of section overhead (SOH), pointer
and the payload as shown in fig 1.

1
i
3
i
i

9 rows
(oytes) 5

VC-4 fe—————— 260 columns (bytss) —————»|

Figure 1: stm-1 frame structure [9]

1. DESIGN AND IMPLEMENTATION
According to the ITU-T standard G.707 the specification of STM-1 Frame are as follows:
Number of rows in a frame = 9 rows
Number of columns in a frame = 9+261 = 270 columns
Number of bytes/frame = 9*270 = 2,430 bytes
Number of bits/frame = 9*270*8 = 19440 bits
Number of bits per second = 9*270*8*8000
= 155,552,000 bits per second
= 155.52 Mbits/s.
The implementation has Framer and the De-Framer module which is sub-divided as follows:
For the Framer Module:
1. Design of the 23-bit PRBS Generator Module.
2. Design of Framer Generator Module.
3. Design of the Scrambler Module.

www.iosrjournals.org 9| Page

ASIC Implementation of STM-1 Framer and De-Framer

. Design of B1 Calculation Module
. Design of B2 Calculation Module
. Design of B3 Calculation Module

4
5
6
For the De-Framer Module:

1. Design of Head Detector Module.

2. Design of Descrambler Module.

3. Design of Overhead detector and extractor.
4. Design of PRBS Detector Module.

5. Design of Clock Divider Module.

6. Design of BIP Error Detector Module

STM-1
PRBS FRAME
STML . SCRAMBLER FRAME
Sienal Generator Generator
i
Calcuhtor frae
CLOCK B2 B2 for next
Calculator frame
RESET
B3 B3 for next
Calculator frame

Figure 2: stm-1 framer

The figure 3.1 shows the block diagram of how an STM-1 frame is generated. The 8 bit PRBS data is
used to fill the payload section of the STM-1 frame. At every positive edge of the clock the PRBS data is fed
into the payload block. When the RESET signal is high the frame will be reset to the initial value. The Frame
Generator block adds the overhead bytes at appropriate positions and fills the remaining payload section with
the prbs data.

The B3 calculation block will calculate the even parity over all the bytes of the payload section of the
previous frame before scrambling and will be placed in the B3 location of the current frame before scrambling.
The Regenerator section overhead and Multiplex section overhead values are also sent into the frame generator
at appropriate locations to complete the frame.

The B2 calculation block will calculate the parity of Multiplex Section and the payload section except
for the first 3 rows of the Regenerator Section Overhead, and place the calculated value in the B2 bytes of the
current frame before scrambling.

The B1 Calculation block calculates the even parity over all the bytes of the previous frame after
scrambling, and places the calculated value in B1 location of the current frame before scrambling.

Finally the Scrambler block will scramble the incoming data and will then transmit the scrambled data.
The fig 3 shows the block diagram of STM-1 Deframer. The STM-1 Frame signal is fed to the Head Detector
block which performs frame synchronization as per ITU-T G.707 [1]. It generates Loss-of-Frame (LOF) and

Out-of-Frame (OOF) alarms.
=

Overhead
Detector

PEBS
DETECTOR USER
DATA

L | Payload

| BIP ERROR L B
| DETECTOR FRRORS

Figure 3: stm-1 de-framer

The Received signal is descrambled and then fed to the Overhead detector which will detect the
overhead. The overhead detector extracts the Regenerator Section Overhead and outputs it from the core. It also
extracts the Multiplex Section Overhead and outputs it from the core. The block extracts Higher Order Path
Overhead for all the configured VCs.

The PRBS detector block will compare the received payload data with the original data and will
indicate if the data received is correct or not.

The BIP error detector block verifies the incoming B1 value and indicates the presence and number of
any B1 errors. The BIP error detector block verifies the incoming B2 value and indicates the presence and

www.iosrjournals.org 10 | Page

ASIC Implementation of STM-1 Framer and De-Framer

number of any B2 errors. It also calculates and verifies the B3 value for all VCs and indicates the presence and
number of B3 errors.

1. Submodules Description
3.1 23 bit PRBS Generator.
Figure 4 shows the schematic of a 23 bit PRBS generator. Here the PRBS data is intialized to 1 when it
is reset. At every clock cycle the values are shifted to the left and the xored values of the tappings are inserted to
the first bit. Then the first eight bits of the PRBS sequence is fed as the input to the STM-1 frame.

\
|

|22 |z| ‘m ‘m |m 1 ‘m ||5 |u ‘ﬂ|12 1 |m‘9|a|7|s s[es]2 |‘n

Figure 4: 23 bit prbs generator

The output of the LFSR is controlled by three parameters: clock, tap positions, and the initial value that
is loaded into the LFSR or seed. For the 23 bit PRBS generator the seeds are used at 23" bit, 6 bit and first bit
according to [10].

3.2 STM-1 Frame Generator

When the reset signal is high the count is reset to zero and the memory is cleared. The scrambled data is
sent as the output of the system and whenever the scrambled data changes the output is updated. The data that
are being sent to the output depends on the value of count. The data’s are sent in left to right fashion and are
based on the ITU.T standard G707 [1].

3.3 SCRAMBLER
Scrambling of the bits in a synchronous transport module (SONET) frame is needed to keep the
frequency content of the transmitted signals near the actual line rate [6].

There are two main reasons why scrambling is used

e Toeliminate long sequences of zeros and ones.

e It eliminates the dependence of a signal's power spectrum upon the actual transmitted data, making it more
dispersed to meet maximum power spectral density requirements.

The scrambler used in this implementation is a parallel scrambler shown in figure 5. The scrambler is reset
to 1111111 at the start of the frame; by loading all seven flip flops with 1’s.

frerter Irast w1 st V\mp o ‘: ety
Lell Ler) (el (Lt Pl el
I ! I :

| 1= I]
e e iy ‘ sl %
Lok Hely L

Figure 5: 8 bit parallel scrambler

3.4 B2 Calculation Module

The B2 bytes are allocated for a multiplex section error monitoring function. This function shall be a
Bit Interleaved Parity 24 code using even parity. The BIP-24 is computed over all bits of the previous STM-N
frame except for the first three rows of SOH and is placed in bytes B2 of the current frame.

3.5 B3 Calculation Module

The B3 byte is allocated in each virtual container for path error monitoring function. This module
calculates the Bit Interleaved Parity 8 using even parity over all the bits of the previous virtual container and is
placed in the B3 byte of the current virtual container.

3.6 B1 Calculation Module

www.iosrjournals.org 11| Page

ASIC Implementation of STM-1 Framer and De-Framer

One byte is allocated for regenerator section error monitoring. This function shall be a Bit Interleaved
Parity 8 (BIP-8) code using even parity. The BIP-8 is computed over all bits of the previous STM-N frame after
scrambling and is placed in byte B1 of the current frame before scrambling.

3.7 Head Detector Module.

The Head Detector block is used at the Receiving end to determine whether the frame has started or
not. This is done by comparing the first six bytes with A1 and A2 which is the Frame Alignment Word and is
used to recognize the beginning of an STM-N frame. Al has a default value of F6h and A2 has a default value
of 28h. The head detector will wait for these values and whenever it encounters all the six values the head signal
will be asserted to indicate the start of the frame. Once the head signal is asserted the STM data will be extracted
[5, 8]. The state machine for implementing Head Detector module is shown in figure 6.

reset oata — Al Crata = Al

2

I
C a1 >
a1 2

Figure 6: fsm for head detector

3.8 Descrambler

The Descrambler is required to retrieve the actual bytes that comprises SDH frame. It is similar to the
scrambler used in the design. The descrambling operation is inverse of scrambling. The descrambler is used
only after the first row of the scrambled SDH frame, until the end of the frame.

3.9 Clock Divider
The clock divider module is used to divide the system clock into different clock signals. These clock
signals are used to output the overhead bytes at the receiver end.

3.10 Overhead Detector

The overhead detector module will detect the overhead bytes at their respective locations, extract the
overhead byte and display them at the output. It also verifies the incoming BIP values with the calculated BIP
value and indicates the presence and number of errors.

3.11 PRBS Detector
The PRBS detector module compares the incoming payload data with the original data and determines
whether the data obtained is correct or not. If there is a difference between the received data and the calculated
data of the payload section, the detector gives the number of bit that are inverted

3.12 BIP Error Detector

The BIP Error detector module compares the calculated value of BIP’s and the extracted values of BIP
and determines the type of error being encountered. If there is an error in B1 byte it tells the number of BIP
violations happening in the frame. The error detection for B2 and B3 is similar to that of B1. The Error Detector
also tests whether the received payload data is correct or not and if there is an error in the signal a Loss of data
signal is indicated.

V. Verification And Simulation
The verification objective is the development of test cases to ensure that the design implements defined
functionality. It was performed in each of the sub-modules of the architecture. Simulation tests were performed
using Modelsim and Cadence NcLaunch. The design was synthesized on Xilinx 13.2 for device utilization
summary, and implemented on Cadence RTL compiler for area and power calculations. Fig 7 shows the output
of the prbs generator which is truncated and fed as the input to the STM-1 framer.

=4 new framer_thipforhs ot

o trncated cutputis od a5
khomabove

Figure 7: Verilog output of 23-bit PRBS

www.iosrjournals.org 12 | Page

ASIC Implementation of STM-1 Framer and De-Framer

Fig 8 shows the structure and the output of STM-1 frame and the completion of a frame in 125us. It also shows
the start of the next frame.

4 Jnew_frames thieafraneiF20ata

J re_framer_thiewframelcck
3 new_framer toeseneieset
J ne_framer_thihewframelint 0

3 Inew_framer thilesfranesman in | 00110010
) Ies_framer_thilisaframelout 011010

E Qs 1 125050640 ps

Figure 8: Verilog output of stm-1 framer

Fig 9 shows the output of the scrambler whose operation is as described in section 3.3. The STM-1 signal is fed
as the input to the scrambler and the scrambled output is sent as the output of the STM-1 frame.

Cursor | 6690 ps

Figure 9: verilog output of scrambler

The figure 10 shows the output of detection and extraction of STM-1 overhead bytes. It shows the extraction of
all the overhead bytes.

WmMmﬁFLxﬂlms;

L
e e |

Figure 10: verilog output of overhead detector

Fig 11 shows the output of PRBS Detector, where the output error is zero for the whole frame indicating that the
data has received correctly.

Massagss

ero, ﬂmicaﬁng the payload data is
ecelved correctly.

Figure 11: verilog output of prbs detector without error

Fig 12 shows the error being detected in the received data, where the error has been injected at the input and the
output error will show the number of bits that are erroneou

Deframer/data_detectorjreset E
Deframer/data_detector/data n [V
Deframer/data_detectorjerror_bit 0000000
I
L

Deframer/data_detector/prbs_dato_pl | 01101101
Deframer/data_detectorjprbs_& 01101101
00

I the error data is introduced in the input the
error is detected and displayed as shown above

Figure 12: verilog output of prbs detector with error

www.iosrjournals.org 13 | Page

ASIC Implementation of STM-1 Framer and De-Framer

Fig 13 shows the output of Head Detector Block, where the Head signal will be set when a sequence of 3 Al’s
and 3 A2’s are detected, indicating the start of the frame.
{FraneHeadoetectjdatan | 000000 ERRNVRIA 0101000 0000 | J90-- JLL LS e L 1902 1.1 J10.. L1 J10...]Il

) oot Sl = vhen e =23
Figure 13: verilog output of head detector

Fig 14 depicts the simulation result of BIP Error Detector where the error is zero indicating that the calculated
and received BIP values are the same. Fig 15 depicts the simulation result of BIP error detector where the errors
are forced manually and the difference can be seen between the received data and the calculated data. The

difference is calculated and reported.
inem_framer_thNewFrameDekramer|B2sr]dock 31
ine_framer_thNewFrame Dekramer B 3

50

e _fremer_thewfraneiDefraner BlenBlen 0
5 irew_fremer_thevfraneDeframer Blr/Blen_detect | 00000000

5] inew_Frner_tNevfrane DeframeBler Blenor it |0
new_Femer_t Nevfrae Deframes e 0

5 irew_fremer_thevfrane Defraner e st | DOD0D0000IOO00
0
0
xt | 00000000

.
-__'The BIP errars are zoro ot the deframer

gz ! 0 e et the B1, B2 and B3
e e B T T o e correcly

Figure 14: output of bip error detector without errors

Figure 16: rtl sche of stm-1 framer

Fig 17 shows the device utilization summary of STM-1 Framer implemented in Xilinx ISE 13.2 on Spartan 6
Evaluation board. It shows the number of LUT’s occupied by the STM-1 framer.

Device Utilization Summary (estimated values) -1
Logic Utilization Used Available Utilization
Number of Slice Registers 229 54576 0%
Number of Slice LUTs 371 27288 2%
Number of fully used LUT-FF pairs 116 684 16%
Number of bonded IOBs 10 296 3%
Number of BUFG/BUFGCTRLs 1 16 6%

Figure 17: device utilization summary of stm-1 framer

www.iosrjournals.org 14 | Page

ASIC Implementation of STM-1 Framer and De-Framer

Fig 18 shows the output of the STM-1 framer which is implemented on Chipscope, which is the tool used for
debugging the output of a program.

€3 Waveform - DEV:1 MyDevice1 (XCGSLX45T) UNIT:0 MyILAO (ILA) e |
B X | o [2 423 424 425 425 427 428 429 430 431 432 433 434 435 436 437 4%
1 | 1 1 1 1 1 | 1 1 | 1 1 | 1 1
o Datain]IS T8 S0 ST | Fe X 2 D ST §TR &0 613
o Count 2005 2005 [27)2426)2a207430) "0 N1 X 2 X 3 (a4 X5 ¥ 6)7 ¥ X 0 (0 (1)iz}
o Dataout s se|E B8) c2 33 J e) F& X 2 o3 05 a0 a0 143 |
~B1 80 80 g0 n E_'
- B2 crz7cre7| cEfrsc X Feafas
- B3 p3{ o3 @ X 3 —
| |
Bl B2 B3 Al A2 Jo reserved Startofthe

bytes frame

Figure 18: chipscope output of stm-1 framer

The fig 19 shows the area report of STM-1 Framer generated using Cadence RTL Compiler. The total area
occupied by the STM-1 Framer is 7270um®.

Instance Cells Cell Area Het Area Wireload

STMl Frame Gen 1187 T270 (1] <none> (D)
Framer 1160 6916 0 <none> (D)
BIPZ2Cal 284 1914 0 “none> (D)
BIP3Cal 57 375 0 “none> (D)

sSCT am 60 332 0 <none> (D)
BIP1Cal 25 284 (1] <none> (D)
prbs_gen 27 354 (1] <none> (D)

{D)}) = wireload is default in technology library
Figure 19: area report of stm-1 framer

Figure 20 shows the power consumption of STM-1 Framer generated using RTL Compiler. The total power
consumed by STM-1 Framer is 0.112mW.

Leakage Dynamic Total
Instance Cells Power(nW) Power{nW) Power (nW)
STHM1l Frame Gen 1187 18735.519% 93521.381 112256.900
Framer 1160 17673.796 80744.715 98418.512
BIPZ2Cal 284 4983.838 26526.821 31510.659
sCram 60 965.798 3447.021 4412 .819
BIP3Cal LY 959.981 4985.85h2 5945 .833
BIP1Cal 25 865.635 5804 243 6669.878
prbs _gen 27 1061.723 B8014.541 9076.263

Figure 20: power report of stm-1 framer

Figure 21 shows the RTL Schematic of STM-1 De-Framer implemented on Cadence RTL Compiler.

Figure 21: rtl schematic of stm-1 de-framer

www.iosrjournals.org 15 | Page

ASIC Implementation of STM-1 Framer and De-Framer

Figure 22 shows the device utilization summary of STM-1 De-Framer implemented on Spartan 6 FPGA in
Xilinx ISE 13.2.

Device Utilization Summary (estimated values) H
Logic Utilization Used Available Utilization
Number of Slice Registers 341 34576 0%
Number of Slice LUTs 932 27288 3%
Number of fully used LUT-FF pairs 481 992 48%
Number of bonded IOBs 33 296 11%
Number of BUFGBUFGCTRLs 4 16 5%

Figure 22: device utilization summary of stm-1 de-framer
The fig 23 shows the area report of STM-1 De-Framer generated using Cadence RTL Compiler. The total area
occupied by the STM-1 De-Framer is 43996um?®.

= Report Area [=ll=ll>=]
Gt by| ERCOURTS(R) ATL Compilsr IS, 1 205 - YO, 10-3258_1 (Apr 620113
Generated on: un 20 2012 154303
Mol Deframer
Techraiogy library . alov_normal 10
Do i G EONGIONE! 31 (BaISACEE 1788 b
e R
| | I | 1 s | |
CECEIREECECET] 000 43996 28|cnane> o)
HEE| aTad a6 0.0 o)
51| oanG 4 .00 (553
Se5 2sia70 a.o0 o)
335 a3a4.0) 0.00 o)
aen| oaron .00 (533
aie 2iaio0 .00 o)
S5 @ieas 000 o)
310 216055 0.00 {533
o aom| 21sead o.00 33
(CeframeriN1 Can 313 218773 0.00 o)
(Do framor/C2 Car 307 21s4e0 .00 o)
Ge 2 Cop ao7| 26 o6 .00 (553
Sral roae 26 .00 o)
D Trarmer/BIPR Daframer zaal 191359 f.00 o hd
close | Heln |

Figure 23: area report of stm-1 de-framer

Fig 24 shows the power consumption of STM-1 De-Framer generated using RTL Compiler. The total power
consumed by STM-1 De-Framer is 0.61mW

Port Power

1

3321 a2

1z
SaEe a4

| Hew |

Figure 24: power report of stm-1 de-framer

Fig 25 shows the physical layout of STM-1 Framer generated using Cadence SOC Encounter.

Figure 25: physical layout stm-1 framer

Fig 26 shows the physical layout of STM-1 Framer generated using Cadence SOC Encounter.

{ t l ; s! 5 | :'l ‘
Figure 26: physical layout stm-1 de-framer

www.iosrjournals.org 16 | Page

ASIC Implementation of STM-1 Framer and De-Framer

V. Conclusion
The development of the STM-1 framer core offers encapsulation of Plesiochronous Digital Hierarchy

standards or support Asynchronous Transport Mode. It can be used for moving voice and data. The STM-1
Framer has been designed and can accommodate 2340 user data’s that will be multiplexed in a single Frame.
The STM-1 De-Framer has been designed and will extract the overhead bytes. The De-framer checks whether
the obtained data is error free or not and also check the overhead bytes to determine the errors in the Section
Overhead.

VI. Acknowledgement
We acknowledge Dr. V. Venkateswarlu, Principal, UTL Technologies for his guidance and suggestion

and UTL Technologies for providing lab facility during the design and implementation.

[1]

[2]
[3]

[4]
[5]
(6]
[7]
(8]
[10]

References
ITU-T Recommendation G.707/Y.1322, Network node interface for Synchronous Digital Hierarchy (SDH), Telecommunication

Standardization Sector of ITU. Geneva, January 2007. |
n

Zhang Xiaoru and Zeng Lieguang, “An SDH STM-1 termination IC”, ASIC 2 International Conference, pp 179-182, 1996.
ITU-T Rec. G.783, Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks, Telecommunication
Standardization Sector of ITU. Geneva, March 2006.

G. Cariolaro, G. Iudicello, “Signal theory for SONET STM-1” Telecommunication symposium 1990. Its’90 symposium record, Sep
1990, pp 26 - 32.

D. Bajic, J. Stojanovic, FTN Novi Sad, Fruskogorska, Mobtel Beograd, “Frame Alignment Monitoring For STM-1 Frame”, IEEE
International Conference on Communications, 2001. ICC 2001, Vol. 10, pp. 2953- 2957.

Srini W. Seetharam, Gary J. Minden, Joseph B. Evans, "A parallel SONET scrambler/descrambler architecture”, Circuits and
Systems, ISCAS, IEEE International Symposium, May 1993, vol 3, pp. 2011 - 2014.

R. Clauberg "Data aggregation architectures for single chip SDH/SONET framers”, IBM J. RES & DEV. VOL. 47 NO.2/3
March/May 2003.

D.W. Choi, “"Frame Alignment in a Digital Carrier System - A Tutorial", IEEE Comm. Mag., pp. 47-54, Vol. 28, February 1990.
Cisco Systems, “Synchronous Digital Hierarchy (SDH) Graphical Overview”, Oct 2006.

Wei-Zen Chen, Guan-Sheng Huang, “A Parallel Multi- pattern PRBS Generator and BER Tester for 40+ Gbps Serdes
Applications”, IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, Aug 2004, pp. 318-321.

www.iosrjournals.org 17 | Page

