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Abstract: In this paper, improved algorithms for radix-8 FFT are presented. Various schemes have been 

proposed for computing FFT. It has Different target domains of applications and different tradeoffs between 

flexibility and performance. Typically, they need reconfigurable array of processing elements .The applications 

have been restricted to domains based on floating arithmetic. We introduce floating-point Arithmetic which is 

based on processing elements. After developing the FFT design we present a routing Algorithm and use 
topology to reduce power dissipation. These modified radix-8 algorithms provide savings of more than 33% in 

the number of twiddle factor evaluations 

 

I. Introduction 
An Orthogonal frequency division multiplexing (OFDM) signal consists of a sum of subcarriers that 

are modulated by using Phase Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM). These days, 

OFDM technique is widely used for high-speed digital communications, such as xDSL, DAB, DVB-T/H, and 

WLAN. In OFDM system, Discrete Fourier Transform (DFT)/Inverse-DFT are used and it is a very important 

operation. Since DFT/IDFT computation requires a large amount of arithmetic operations, we need an efficient 

FFT algorithm which can reduce the number of arithmetic operations to meet real time computation in OFDM 

systems. 

There are many kinds of FFT architectures used in OFDM systems. They are mainly categorized as 
three types: The Parallel architecture, the Pipeline architecture and the Shared memory architecture. The 

Parallel and Pipeline architectures have more buttery processing units to achieve high performance but they 

consume larger area than the Shared memory architecture. On the other hand, the Shared memory architecture 

requires only one buttery processing unit and has the advantage of area efficiency. But the Shared memory 

architecture has a drawback of low throughput and requires a complex circuit design of memory address 

controller. Fortunately, the lower throughput of the shared memory architecture increases dramatically if the 

high radix algorithm is used. But the high radix algorithm has defects of more complex memory scheme and 

limitation that FFT length (N) must be only powers of radix- r (rn). 

We focus on the Shared memory architecture for area efficiency and hardware simplicity which are 

required to make small OFDM receivers. One radix-8 buttery processing unit is used and it has the pipeline 

structure in order to realize high throughput. However, the FFT computation is restricted to N points which are 
8n. We propose the structure which can perform the radix-4 or radix-2 FFT algorithm in the radix-8 buttery 

processing unit to permit the FFT computation of all points which are powers of 2. Because of choosing N 

points are a power of the radix-r, the N-point DFT is decomposed into a set of recursively related r-point 

transforms. Efficient memory assignment and addressing are proposed to reduce the complexity of memory 

scheme. The ROM-based lookup table storing twiddle factors consumes large area in case of long-length FFT 

computation. To solve the problem, the twiddle factor generator is replaced with the ROM-based lookup table.  

 
                                              Fig 1. Twiddle factors involved in FFT 
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II. Proposed System 

The N-point Discrete Fourier Transform (DFT) of a sequence x(n) is denoted as 

 
Where Wn is exp(j2=N). To compute X[k] directly, N2 multiplication and N (N logN) addition are needed. If 

above X[k] is represented in the matrix form like the following equation, 

 
A primitive 8th root of unity in R. If R contains the element p2/2, then it can be expressed by 

 
Let R be the field of complex numbers for the remainder of this section. We will assume that a multiplication in 

C requires 4 multiplications and 2 additions in R, the real numbers. 

 
As introduced in , a radix-8 algorithm can be constructed using the transformation 

 
The radix-8 algorithm can be developed by duplicating the steps used to create the radix-2 or radix-4 algorithm 

at this point. This analysis will produce a transformation matrix given by 

 
Which will be used to implement the reduction step 
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It can be shown that the number of operations needed to implement the classical version of the radix algorithm 

is governed by the recurrence relations 

 
where M(1) = 0 and A(1) = 0, M(2) = 1, A(2) = 2, M(4) = 3, and A(4) = 8.We must also subtract multiplications 

to account for the cases where j = 0. This does not appear to be an improvement compared to the radix-4 
algorithms, but we have not yet accounted for the special multiplications by the primitive 8th roots of unity. The 

recurrence relation 

 
Modeling an addition in C by 2 additions in R, a multiplication in C by 4 multiplications and 2 additions in R, 
and a multiplication in C by a primitive 8th root of unity with 2 multiplications and 2 additions in R, the total 

number of operations in R needed to implement the radix-8 algorithm for an input size which is a power of eight 

is given by 

 
This represents a savings of 1/6 · n · log2 (n) additions in R compared to the radix-4 algorithms. The savings for 

other input sizes are close to the above results, but not quite as attractive. The operation counts for the twisted 

radix-8 FFT algorithm are the same as the classical radix-8 algorithm. 

 

METHODOLOGIES 
 Here three types of modules are used. 

MODULES  
 1. ALU 

 2. Registers 

 3. Processing Element 
 

III. Arithmetic units involved in FFT computation. 
 Briefly, architecture consists of an array of processing elements, memory; interconnect structures, I/O 

ports, and synchronization and reconfiguration mechanisms. 

A. Processing Element: Each Processing Element consists of resources for functional operations. This can 

be either one or more dedicated functional units or one or more arithmetic logic units (ALUs). In case of an 

ALU we have to consider if this unit is configured in advance or during a reconfiguration phase, or if this ALU 

can be programmed with an instruction set. In case of programmability it has to be considered if a local program 

is only modulo sequentially executed by a sequencer or if the instruction set includes also conditional branches. 

 

 
Fig 2: Processing Element 
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B. Array: The size of the processing array, how many processing elements are present in the array and 

how are they aligned, as one line of processing elements, several lines of processing elements, or one array of 

NX N processing elements. Is it connected with the nearest neighboring PEs top, bottom, left, and right. The 

size of the array can be optimized to a specific application domain. In Fig 3, the area-critical functional units are 

located outside thePEs and shared among a set of PEs .Each area-critical functional unit is pipelined to curtail 

the critical path delay,and its execution is initiated by scheduling the area-criticaloperation on one of the PEs 
that share this area-critical resource. Thus, each PE can be dynamically reconfigured either to perform 

arithmetic and logical operations with its own arithmetic logic unit (ALU) in one clock cycle, or to perform 

multiply or division operations using the shared functional unit in several clock cycles with pipelining.  

 
Fig 3: Integer PE Array (4 X 4) 

 

C. Memory: Memory can be divided into local memory in the form of register files inside each processor 

element and into memory banks with storage capacities in the range from hundreds to thousands of words. The 

alignment and the number of such memory banks are important for the data mapping. Furthermore, knowledge 

of several memory modes is helpful, e.g., configuration as FIFO. 

D. Interconnect: Here, the structure and number of communication channels is of interest. Type of 

interconnects used, buses or point-to-point connections used. How are these channels aligned, vertically, 

horizontally, or in both directions? How long can point-to-point connections be, without delay, or how many 

cycles have to be taken into account when communicating data from processing element to processing element. 

Additionally, similar structures are required to handle the control flow. 
 

E. I/O-ports: The maximum bandwidth is defined by the number and width of the I/O-ports. The 

placement of these I/O-ports is important, since they are responsible for feeding data in and out. Furthermore, it 

has to be considered if the I/O-port is a streaming port or an interface to external memory. 

 

F. Reconfiguration: Here, the configuration time and the number of configuration contexts have to be 

considered.In addition; possibilities of partial and dynamical reconfiguration during the execution have to be 

considered. 

 

i. Loop Unrolling 

Loop unrolling is the process of reusing the loop code to include more than one iteration of the old 
code, in a single pass with the new one. Loop unrolling works by replicating the body of a loop some number of 

times and scheduling the resulting code as a single basic block. Replicating the loop body has a couple of 

performance advantages 

1. Producing a larger loop body provides a larger block of instructions for the scheduler to work with, which 

gives the scheduler more options when positioning operations.  

 

2. Combining multiple iterations allows induction variable computations to be combined. These performance 

improvements are traded against the potential penalty caused by increased I-cache misses on the larger loop 

body.  Loop unrolling is used to minimize stalls that may be encountered inside loops, and also to get rid of the  

Overhead of running unnecessary branch conditionals. 

 

ii. Arithmetic Operations 
Unlike normal operations, floating point operations are multi-cycle operations executed on a pair of 

integer PEs. Normally, each PE fetches a new context word from the configuration cache every cycle to execute 

the operation corresponding to the context word. However, if the fetched context word is for a multi-cycle 

operation such as floating-point operation, the control is passed over to the FSM.  

1) Arithmetic/logical operations: A PE can execute ALU operations in one clock cycle. 

2) Load/store operations: A PE can execute load/store operations in several clock cycles. These operations are 

executed by dedicated functional resources located outside the PE array. Since the functional resources are 

pipelined, they can start a new computation every clock cycle. 
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3) Floating-point operations: A pair of PEs can execute floating-point operations taking several clock 

cycles.These operations are also multicycle operations like multiply/divide/load/store operations. However, they 

cannot be pipelined since they are executed directly on the PEs. Among the floating-point operations, however, 

some operations such as floating-point multiplication and division utilize the dedicated outside integer 

multiplier or divider. Both operands of a floating-point operation must be of floating-point type since we do not 

support mixed-type inputs or type casting in our current implementation. 
 

iii. Resource Pipelining 

 The pipelining is used to achieve high computation throughput. The Loop engine array processor 

architecture use pipeline execution to map loop onto PE array and the loop program is discomposed to multi-

parts which is implemented by some PEs: 

1. Loop Finite State Machine is corresponding to the control conditions of loop. 

2. Processing Element array is corresponding to the loop body. 

3. Loop finite state machine control read/write data from memory. 

4. Processing Element array handle the execution of the input data from memory.  

The pipeline execution of loop depends on the mPEs and cPEs. mPEs provide flexible storage 

scheduling and cPEs provide powerful computation capacity. The index value of loop control variable is 

changed step by step in mPE and the data are read from LM according to the suffix of loop. These data are put 
to cPE for computing and the results are saved to the address that mPE specifies. 

The process of synthesizing an RTL structure from the functional description during the high level synthesis 

involves three phases: 

1. Allocation: Determining the number of instances of each resource needed. 

2. Binding: Assignment of resources to computational operations. 

3. Scheduling: Timing of computational operations. 

 

IV. Fast Fourier Transform 
 In this section we present several methods for computing the FFT efficiently.  

 

 
 

A direct realization of this algorithm leads to N2 multiplications and N (N-1) additions.  Of course, a 

direct implementation is not realistic. Fortunately, the Cooley- Tukey FFT algorithm reduced the order of 

complexity from N2 operations down to NlogN operations. 128 -point FFT radix-8 can be implemented by using 

two 64- point FFT according to Cooley -Tukey FFT algorithm. In view of the importance of the FFT in various 

digital signal processing applications, such as linear filtering, correlation analysis, and spectrum analysis, its 

efficient computation is a topic that has received considerable attention by many mathematicians, engineers, and 
applied scientists. 

 

V. Network-on-a-Chip 
Network-on-Chip or Network-on-a-Chip (NOC) is an approach to design the communication 

subsystem between IP cores in a System-on-a-Chip (SOC). NOCs can span synchronous and asynchronous 

clock domains or use unclocked asynchronous logic. NOC applies networking theory and methods to on-

chip communication and brings notable improvements over interconnections.Here we use bus topology to 
interconnect the IP’s to minimize the complexity. 

 

VI. Simulation And Implementation 
VERILOG is frequently used for two different goals: Simulation of electronic designs and synthesis of 

such designs. Synthesis is a process where a VERILOG is compiled and mapped into an implementation 

technology such as an FPGA or an ASIC. Many FPGA vendors have free tools to synthesize VERILOG for use 

with their chips, where ASIC tools are often very expensive. 

 

http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://en.wikipedia.org/wiki/System-on-a-Chip
http://en.wikipedia.org/wiki/Asynchronous_circuit
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Communication
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Fig 4.Modelsim Output 

 

VII. Conclusion 
 We presented a effective implementation of Fast Fourier Transform on FPGA.In this paper we 

developed both integer and floating point operations. After completing the arithmetic design we carried out a 

Fast Fourier Transform (FFT) based on radix-8 techniques that perform pipelining, which achieves drastic 

performance improvement. For randomly generated test examples, we showed that the proposed method 

compute FFT in a effective way to achieve maximum speed of computation .Finally we carried out NOC with 

the help of Design partitioner tool to reduce the complexity and give considerable power reduction. 

 

References 
[1]  H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E.M. C. Filho, “Morphosys: An integrated reconfigurable system 

for dataparalleland computation-intensive applications,” IEEE Trans. Comput.,vol. 49, no. 5, pp. 465–481, May 2000. 

[2]  PACT XPP Technologies [Online]. Available: http://www.pactxpp.com 

[3]  B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,“ADRES: An architecture with tightly coupled VLIW processor 

andcoarse-grained reconfigurable matrix,” in Proc. FPLA, 2003, pp. 61–70. 

[4]  Chameleon Systems, Inc. [Online]. Available:http://www.chameleonsystems.com 

[5]  T. J. Callahan and J. Wawrzynek, “Instruction-level parallelism forreconfigurable computing,” in Proc. IWFPL, 1998, pp. 248–257. 

[6]  W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S.P. Amarasinghe, “Space-time scheduling of instruction level 

parallelismon a RAW machine,” in Proc. ASPLOSV, 1998, pp. 46–57. 

[7]  B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,“DRESC: A retargetable compiler for coarse-grained 

reconfigurablearchitectures,” in Proc. ICFPT, Dec. 2002, pp. 166–173. 

 


