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 Abstract : We are presenting a new suboptimum decoding strategy, namely, Adaptive Selective State-

Transition Decoding (ASSTD) for Trellis Coded Modulation schemes transmission over band-limited ISI 

channels. The ASSTD is a combined approach provides an improved error performance over Reduced State 

Sequence Estimation (RSSE) techniques which are in practical use. The ASSTD operates on two different 

concepts and has the flexibility to work with a controlled complexity. Simulation results are obtained for static 

band-limited ISI channels. The results show that the ASSTD can be extended to fading channels. 
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I. INTRODUCTION  
With the advancement in technology, increasing demand for reliable high rate digital data transmission 

demands coded communication systems having large   spectral    efficiency. It    is    the    pioneer    work    of 

Dr. G. Ungerboeck in this direction who invented Trellis Coded Modulation (TCM) schemes [1, 2]. TCM is a 

bandwidth efficient coded modulation technique developed for high rate digital data transmission. It is a 

combined modulation technique which has the ability to improve    the     robustness of digital    transmission   

over   Additive   White Gaussian Noise (AWGN) channel by 3 to 6 dB relative to uncoded system. TCM also 

provides an improved error performance in the presence of other channel impairments. Some of the applications 

of TCM are: ASDL, satellite communications, WiFi, WiMAX, CD writing and in flash memories. 

II. TRELLIS CODED MODULATION SCHEME 
The Fig.1 depicts the TCM encoder.  It comprises a convolutional encoder of rate 1~~ mm  where m  is 

the number of bits to be transmitted and mm ~  is the number of bits fed to the convolutional encoder. Resulting 

1~~ mm  coded bits and mm ~  uncoded bits form the trellis code. A redundancy of one bit is introduced in the 

code generated. The encoded 1m  bits are mapped into a signal point of M-QAM constellation where 12  mM . 

The encoded bits divide the signal constellation into subsets each of size mm ~

2   from which one of  the signal 

point is selected by the mm ~  uncoded bits for transmission, and the concept is termed as set-partitioning. Since 

the convolutional encoder is a finite state machine the trellis codes generated are represented by a trellis 

structure where the nodes represent the encoder states and the transitions between specific nodes is the encoder 

state changes, depending upon the current information bits and previously generated symbol.  Each state 

transition is associated with possible symbols subset that can be transmitted. The Trellis encoder generates 

sequences of symbols which are inter-dependent. This property is being used by the receiver for errorless 

symbol detection. 

The MLSE is the optimum decoding strategy for TCM schemes [1, 2, 3] in the presence of AWGN. 

The MLSE implemented through Viterbi Algorithm traces the encoder trellis to perform ML sequence 

estimation based on the noisy received signal )(nr  given by:  

)()()( nwnanr   

where )(na is the transmitted symbol, )(nw is the Additive White Gaussian Noise sample and )(nr is the noisy 

received symbol. The received signal sequence {r(n)} is decoded into one of the allowed sequences   nai
 

based on the optimum decoding rule. Accordingly,  nai
 is the selected sequence if: 

                 p ))(/)(( nanr i
> p ))(/)(( nanr j

  for all ji   

For an AWGN channel this is equivalent to computing the squared ED between  )(nai
and )(nr   selecting the 

signal sequence for which:  
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The Viterbi decoder performs symbol decision after a delay of  5  where   is the constraint length 

of the encoder. For band-limited ISI channels the maximum-likelihood sequence estimation has to process the 

ISI-Code trellis structure. The fact that the computational complexity of MLSE prohibits its implementation for 

bandlimited ISI channels initiated an era for the development of reduced complexity suboptimum decoding 

strategies. Among many suboptimum decoding techniques developed, Reduced State Sequence Estimation 

(RSSE) [4,5] is the one which finds many practical applications. In RSSE the ISI-Code trellis structure is 

reduced by merging the trellis states [4,5]. The metric computation in RSSE is given by: 

                                              }|ˆ|
~

min{
~ 2
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where 
nM

~ is the metric computation at the interval n, nz is the noisy received symbol subjected to intersymbol 

interference and L is the channel memory length and 
ig are the channel impulse responses. The second term 

results in an error propagation in the feedback process due to the tentative decision 1
ˆ

na . The ASSTD  

minimizes this error propagation by incorporating adaptive noise minimization strategy.  

III. ADAPTIVE SELECTIVE STATE-TRANSITION DECODING (ASSTD) 
The ASSTD is a new suboptimum decoding strategy presented in this paper, for TCM schemes 

transmission over bandlimited ISI channels. Fig.2 shows the block diagram of the communication The ASSTD 

combines two different concepts: firstly, it provides an improved error performance through fine tuning of 

adaptive coefficients 
i of the decoding algorithm, secondly, computational complexity is reduced by making 

the metric computations at various nodes of the trellis structure selective by incorporating selective state- 
transition [6]. The execution time is a function of the selectivity criteria being incorporated. Thus the ASSTD 

strategy provides the best possible error performance over the RSSE scheme within its error parameters 

constraints defined. The modified metric:  
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where S

nM
~ is the metric computed with adaptive and selective state-transition approach. 
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Fig. 2   Discrete-time model of data transmission system with ASSTD  
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IV. CONCLUSION 
We have developed the new reduced complexity decoding strategy ASSTD for TCM schemes 

transmission over bandlimited ISI channel. Simulation results are obtained for 4-state 16-QAM TCM scheme 

transmission over two static ISI channels, with the impulse responses: g0=.5, g1=.5 and g0=.6, g1=.4. 
Simulations results given in TABLE 1 and TABLE 2  show that the ASSTD provides improved error 

performance over RSSE. Hence the technique can be adapted for TCM schemes in application where Noise 

effect is severe, and in applications where TCM is a component code of a concatenated code. 

It is also noted that the gain improvement is a function of the tuning process of the adaptive algorithm 

incorporated in ASSTD,   symbol error   improvement      is   shown    in   “Adaptive Minimization” column of      

the TABLE 1 and TABLE 2. The selective likelihood estimation is another factor of ASSTD which dominantly 

defines the computational complexity of the algorithm which in turn decides the execution time. The graph 
shown in Fig.3 depicts normalized execution time Vs SNR in dB. From the top, curve number 1 is the execution 

time of Adaptive minimization process in the absence of selective state-transition. The second curve from top is 

for the simplest case of RSSE that is PDFD. The third curve is for ASSTD strategy for selective state-transition 

coefficient S= 0.2V where V is noise variance, and the bottom curve depicts the normalized time of execution of 

ASSTD for S=V. The ASSTD has the flexibility to adapt to both the concepts in accordance with the noise 

parameters. Consequently the ASSTD can be used in TCM applications related to fading channels as well.   

 

 

 Table 1 
                                                  Table showing the symbol error as a function of  

selective state transition parameter S, for g0=.6,g1=.4 

 

 

Table 2 
Table showing the symbol error as a function of  

selective state transition parameter S, for g0=.5,g1=.5 
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18    2                                    0     79                   74            94                80 

17    17                                  3     379                 356            367            357 

16    38                                  4     1443               1407       1420 1410 

15   108                                 6     3833               3680         3821 3675 
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For S=V     For S=0.2V 

 
Symbol Error 

 
Symbol Error 

 

19    0                                    0   108                 102            102            96 

18    3                                    0   345                 322            328                311 

17   14                                   2   1641               1632 1741 1621 

16   34                                   2   4621               4580       4754 4574 

15   96                                   7   10813             10710          11122  10698 
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                                                 Fig.3 Normalized time of execution Vs SNR in dB for                                                

            PDFD, ASSTD and Adaptive minimization strategies, for channel memory L=1 
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