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Abstract: It is well known that classical differential detection of MPSK signals, wherein the information is 

encoded as the first order phase difference, is a simple and robust form of communication in environments not 

subject to frequency variation.  For channels that introduce into the carrier a random frequency shift, eg., those 

associated with moving vehicles, classical differential detection as above may yield poor performance, 

particularly if the frequency shift is an appreciable fraction of the data rate.  In such situations, one must resort 

to a form of differential detection that encodes the information as higher order (second order for constant 

frequency shift) phase difference process.  It is shown that the  proposed  receiver  is  robust  to  the  
distortions  caused  by the  random frequency variation. A lower bound on the error probability of the 

proposed MSDD receiver is also derived and compared to that of an autocorrelation demodulator for the case 

where the observation interval approaches infinity. 

  

I. Introduction  

Differential detection of phase-shift keying (PSK) signals is a well-known strategy for mitigating the 

performance degradation due to unknown phase offset. The constellation rotation caused by the phase offset can 

be removed using a differential PSK (DPSK) modulation scheme along with a differential detector. However, 

this detector suffers from a signal-to-noise power ratio (SNR) loss compared to a coherent detector. An 

effective means to mitigate this SNR loss is known as multiple-symbol differential detection (MSDD). 

The MSDD scheme is, indeed, a more general case of the conventional differential detection in which more 

than two consecutive samples are utilized to detect the information symbols. It is shown in that by 
increasing the number of r ecei ved  samples in  MSDD, the r ecei ver  per formance approaches that of 

coherent demodulation of DPSK signals. However, the MSDD receiver analysis  assumes that the 

fr equency offset equals zero.  In the case of  nonzero frequency offset, conventional MSDD must take the 

frequency offset into account. Otherwise, increasing the number of the received samples in MSDD 

degrades the performance very quickly. A double DPSK (DDPSK) modulation scheme (also referred to as 

second-order phase difference modulation) has been proposed  for the case when the frequency offset is 

unknown. In the two types of demodulators for this modulation scheme have been introduced, the 

autocorrelation demodulator (ACD) and the optimum I–Q demodulator. This reference also proposed an 

MSDD technique based on ACD for DDPSK signals and showed that this structure is frequency offset 

invariant. Nevertheless, even under the most optimistic conditions, i.e., an infinite number of received samples 

and vanishingly small noise power, the proposed receiver  still requires 3 dB more SNR than coherent 

detection of differentially encoded PSK signals. 
In this paper, we study the effect of frequency variations on a PSK signal transmitted over an 

additive white Gaussian noise (AWGN) channel. We show that frequency offset attenuates the amplitude of 

the transmitted signal and rotates its constellation points about the origin by a time-varying phase. Then, 

we derive a MSDD scheme to demodulate a DDPSK signal and show that this scheme is  not sensitive to 

constellation rotation caused by the frequency offset. The proposed demodulator suffers from a SNR loss 

compared to a conventional MSDD with DPSK modulation when frequency offset is not present. However, as 

will be seen in the sequel, the SNR loss can be less than 3 dB for some modulation schemes resulting in a net 

performance gain relative to the ACD-based MSDD scheme proposed. 

This paper is organized as follows. In Section II, we present the signal model for the  cases  where a   

rectangular pulse- shaping filter and a bandlimited pulse-shaping filter are used at the transmitter. In Section 

III, we propose a new MSDD scheme for DDPSK signals and derive a lower bound on its error probability. 
Numerical results are presented in Section IV. In Section V, some conclusions are drawn 
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Fig. 1 The frequency domain representation of a bandlimited  received signal, and its demodulated 

version in the presence of frequency offset . 

I. SIGNAL MODEL 

2.1.Rectangular pulse shaping 

Assume that a rectangular pulse-shaping filter is used at the transmitter. Then, the baseband 

received signal in the 𝑘th symbol interval is expressed as 
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 where 𝑠𝑘    is the 𝑘th information symbol, 𝑓o   and 𝜙 are the frequency offset and phase offset, 

respectively, 𝑇 is the symbol interval  and  𝑛(𝑡)  is  the  baseband  complex-valued  AWGN process with mean 

zero and power spectral density  𝑁0 /2. We assume that 𝑠𝑘   is defined as 
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phase at the kth symbol interval and 𝑀 denotes size of the constellation. The received signal is passed 

through a correlation demodulator to obtain the decision statistic at the 𝑘th symbol interval, normalized to T , 

as 
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 Where   =  02 f T ,     /2   and kn  is an AWGN sample with mean zero and variance 

 2
0n N  . The frequency offset has two adverse effects on the received signal.  It  rotates the constellation 

points about the origin with a radial speed  of  0 02 .f   It also decreases the signal amplitude by a factor 

of  sin( 2)/ ( 2).   Fortunately, for small values of frequency offset, the  sin( 2)/ ( 2), term decays 

slowly with  , and for   / 4  the amplitude decay is less than 2.5%.  Therefore, we assume in the 

sequel that   is small enough that we can approximate  sin( 2)/ ( 2).  with unity.  Thus, (3) can be 

approximated as 
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As we will see in the sequel, this assumption has little effect on the predicted performance of the proposed 

receiver provided that   / 4 . 

 

2.2. Bandlimited Pulse-Shaping 

 The Signal model presented in Section 2.1  is based on the premise that a rectangular pulse shaping 

filter is used at the transmitter. However, in practical systems the transmission channels have a limited 

bandwidth which distorts the rectangular pulse and causes intersymbol interference (ISI).  In this section we 

describe how the signal model changes if the transmitter pulse-shaping filter,  Tp t , is bandlimited. 
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 Fig.1 shows the frequency domain representation of the bandlimited received signal in the presence of 

the frequency offset before and after demodulation.  Normally, it is assumed that the receiver filter, ( )Rp t , is 

matched to 
   

maximize the output SNR.  It is also assumed that the combination of  Tp t and ( )Rp t

satisfies Nyquist’s first criterion for zero intersymbol interference (ISI).  In the presence of unknown frequency 

offset, this procedure will cause ISI because after demodulation the frequency offset changes the frequency 

response of the transmitter filter, ( )Tp w , as seen in Fig.1.  An alternative to this procedure has been proposed  

in which a root-raised cosine filter with 100% excess bandwidth is used at the transmitter along with a brick 
wall filter at the receiver, i.e., 
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 Then, the kth decision statistic is formed by taking two samples of the filtered received signal at 

t=(k+1/4)T and t=(k-1/4)T and summing the resulting samples.  It is shown that this procedure is ISI-free and 

does not degrade the SNR relative to the matched filter case provided that ( )Rp t  and  Tp t have the same 

single-sided bandwidth 2π/T. 

 Assume now that the bandwidth of ( )RP  , W, is large enough to ensure that ( )TP  is undistorted.  

Then, the filtered received signal is given by 
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And n(t) is a zero-mean Gaussian wide-sense stationary process with autocorrelation function 
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The kth decision statistic is therefore given by 
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Similar to the rectangular pulse-shaping case the amplitude of the signal decays by a factor of 

cos(ψ/4). However, again, this decay is less than 2% for |ψ|<π/4. 

 Another inherent problem with this approach is the noise enhancement caused by PR(ω).  Indeed in 

the presence of the frequency offset, the bandwidth of PR(ω) is greater than 2π/T.  As a result, the variances of 

n+ and n- increase relative to the case where W=2π/T.  Interestingly, when 2π/T < W < 4π/T the correlation 

( )Tp t
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between n+ and n- is negative which reduces the variance of the overall noise.  In order to quantify this fact, we 

assume that W=2π(1+α)/T where α > 0.  Then, the variance of the overall noise term (9a) can be evaluated as 
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Where N0 (1+α)sinc(1+α) denotes the contribution of the correlation between n+ and n-. Now one can 

show that for 0 ≤ α ≤ 0.125, or equivalently, |ψ|≤π/4, 2
n  increases by less than 0.3% relative to the case where 

ψ = 0.  Hence, in the case of bandlimited signaling eq. (9a) can be still be well approximated by eq (4) 

provided that |ψ| ≤ π/4. 

 

1.3. Discussion 
 As seen in sections 2.1 and 2.2, the amplitude loss due to frequency offset is negligible when |ψ| < 

π/4. In contrast, the constellation rotation caused by the frequency offset can degrade the performance rather 

rapidly even for small values of ψ.  This is because the angle of rotation is a function of time and varies from 

one symbol interval to the other.  The time-varying constellation rotation can be converted to a time-invariant 

rotation by using a DPSK modulation scheme, i.e., 
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Where 
.
i  is the ith encoded information phase and 

.
i =θi-θi-1.  Assume that the term exp (jkψ) in (4) 

is absorbed into sK.  Then, (4) can be written as 
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This means that in the presence of the frequency offset, the information phases should be chosen from   
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m M  .  In other words, the effect of ψ on a DPSK signal is similar 

to the effect of phase offset on a PSK signal.  Therefore, a DDPSK modulation should be invariant to 

frequency offset as the DPSK modulation is invariant to phase offset. 

 

II. Frequency Offset Insensitive Differential Detection 
3.1. Receiver Derivation 

 Assume that the frequency offset and the phase offset are constant over N successive samples.  Then, 

using (4) one can define a new variable 


kr  as 
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 Assume that a PSK modulation is employed, i.e., sk is given by (2).  Then, the first and second terms 

on the right of (13b) are independent Gaussian random variables each with mean zero and variance   2
s n .  In 

contrast, the last term has Complicated probability density function. However, for practical SNR values this 

term is relatively small compared to the first two and can be ignored.  Moreover, it can be shown that 



Multiple Symbol Differential Detection of MPSK which is Invariant to Frequency Offset using  

www.iosrjournals.org                                                             17 | Page 

 

k ln andn  are uncorrelated for k ≠ l.  Therefore, we approximate  


kn  as a zero-mean Gaussian random 

sequence with 
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Where   .  denotes the Kronecker delta function. 

 Assume now that ψ has a uniform distribution over the interval [0,2π) and that any amplitude 

variations due to frequency offset can be ignored.  Also assume that in (13a) the term   1
*

.
exp( )kk k ss s j  

denotes the kth transmitted symbol.  Then the maximum-likelihood (ML) receiver should maximize the metric 
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 Where the last equation follows from the fact that multiplying the argument of the | . | in (14) by 

  1

.

k N  does not change the metric [2].1  Note that in this case we need N+1 samples to detect N-1 information 

symbols.  It can be readily verified that 
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where now      1

. ...
k k  is the information phase at the kth time interval.  Thus, (15) can be rewritten as 
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Clearly, the metric in (17) is independent of the frequency offset and the phase offset.  Assuming that 

   1 0 0  and using the identity       1 2
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Encoding the information symbols using (18) is equivalent to encoding the information symbols using a DPSK 

encoder once, and then encoding the resulting symbols one more time with the same encoding rule.  Note that 

the analysis presented in this section serves as the proof of optimality for the MSDD receiver when the  


kn
 

are Gaussian.  This occurs when the cross-noise term in (13b) is negligible, i.e., when the SNR is relatively 

large. 
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3.2. Error Probability Analysis 

 For DDPSK signals, the I-Q demodulator is a special case of the proposed receiver when N=2.  In the 

absence of the frequency offset, an exact expression for the BER of the I-Q demodulator with binary DDPSK 
modulation has been derived.  For higher order DDPSK signals, i.e., when M > 2, an exact expression for BER 

of the MSDD is not known to the best of author’s knowledge.  However, an upper bound for the symbol error 

rate (SER) for the case where N = 2 has been derived. 

 We now obtain a reasonably tight lower bound on the BER of the MSDD for the case where N . 

To this end the performance of MSDD with DPSK modulation and N ,   lower bounded by that of the 

coherent detection of differentially encoded PSK. i.e., 
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 Where Pm is the probability that the AWGN moves the transmitted MPSK symbol m decision regions 

away from the correct region and Ps is the SER of the optimum MPSK detector in AWGN, whose decision rule 

is given as 
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 The lower bound in (20) is valid only when the received samples, { rk }, are used to evaluate the 
MSDD’s decision metric.  However, the receiver proposed in section 3.1 uses the {rk̃} to evaluate the decision 

metric given by (17).  Therefore, the lower bound in (19) should be adjusted to account for the above fact.  To 

this end, by replacing rk with rk̃ in (20), one has that 
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Eq. (21) denotes the decision rule of the optimum differential detector of MDPSK when N = 2. The SER of 

this receiver is given by eq. (3) 
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We also use the distribution of the phase angle between two vectors corrupted by uncorrelated Gaussian noise 

to obtain Pm, after some manipulations, as 
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                                                                                             m=1,2,….., M-1.                           (22b) 

For the special case when M=2, 
LB
bP  can be expressed in closed-form as 
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Where γb denotes the SNR per bit.  Note that for moderate to large values of SNR the square terms on the right 

of (19) are very small and can be ignored. Hence, for these SNR values  
LB
bP  is approximately equal to 2Ps. 
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III. Numerical Results 
As mentioned in Section 2, the expression given in (4) is an approximation for the sampled received 

signal as it does not account for the amplitude attenuation caused by the frequency offset. It is, therefore, 

important to examine the receiver performance in the presence of this attenuation and indicate how good the 

aforementioned approximation is.  To this end, we evaluate the error probability performance of the proposed 

MSDD receiver as a function of ψ for γb=10 dB and selected values of N.  We assume a rectangular pulse-

shaping filter is used at the transmitter.  The results are shown in Fig.2 for binary DDPSK (BDDPSK) and 

quaternary DDPSK (QDDPSK) modulations. Note that the error probability performance at ψ = 0 represents 

the case where eqs. (3) and (4)   are identical.  When ψ < 0.4, the error probability is approximately constant 

for all examined values of N. The error probability slightly increases when ψ increases greater than 0.4 for 

both modulation schemes.  However, the increase is small enough that we can consider eq. (4) a reasonable 

approximation for the sampled received signal. 
The performances of ACD  receiver for DDPSK signals and the proposed receiver with BDDPSK 

modulation for ψ = 0.3 and selected values of N are depicted in fig. 3.  It is assumed that the band pass filter 

prior to the ACD has a bandwidth of  8π/T .  When N = 2, the ACD outperforms the proposed receiver for 

SNR  ≥ 11 dB.  Increasing the observation interval improves the performance of the proposed receiver relative 

to the case where N = 2 rather rapidly.  However, this increase does not have a significant impact on the 

performance of the ACD receiver. For example, when the average BER equals 10-6, increasing N from 2 to 8 

results in a 3 dB SNR gain for the proposed receiver, whereas the corresponding gain for the ACD is 

approximately 0.35 dB. 

 

 

 
 

 

 

 

Fig.2 The average error probability of the proposed                   Fig. 4 The average SER as a function of SNR 
for the  

MSDD as a function of ψ with BDDPSK & QDDPSK         Proposed MSDD receiver with QDDPSK 

modulation,  modulation for SNR=10dB & N=2,4,6,8 and 10.                       ψ=0.3 & selected values of N. 

 

Fig.3 The average BER as a function of SNR for the                    Fig.5 The lower bound on the BER of the 

proposed                                                                          

proposed receiver and the autocorrelation demodulator                 receiver and the average BER for coherent 

detection 

with BDDOSK modulation, ψ=0.3, and selected                         of DPSK as a function of SNR for M=2,4,8 

and 16 
values of N.                                     
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Fig. 3 also shows that the lower bound becomes quite tight when N increases. Note that for N = 16 

and BER = 10-6 , the proposed receiver achieves a gain of 2.5 dB relative to the ACD receiver.Fig 4 illustrates 

the error probability performance of the proposed receiver with QDDPSK modulation for the cases where ψ = 
0 and ψ = 0.3, and selected values of N.  As seen in the figure, the performance of the receiver is 

approximately the same for both cases.  Note that in this case, increasing the observation interval significantly 

improves the receiver performance.  For example, when the SER=10-5 , increasing N from 2 to 10 leads to a 

SNR gain of 3.5 dB. 

 The ACD receiver suffers from a 3 dB SNR loss compared to the coherent detection of DPSK signals 

when   N  and SNR is very large.  It is, therefore, desirable to investigate the SNR loss of the proposed 

receiver relative to the coherent detection of DPSK. Fig. 5 compares the lower bound on the BER of the 

proposed receiver with the BER of coherent demodulation of DPSK for M = 2, 4,8 and 16.  When the BER = 

10-5 and BDDPSK modulation is used, the gap between the lower bound and coherent demodulation of DPSK 

is approximately 0.6 dB. This gap increases to 2.5dB for QDDPSK, which is still 0.6dB  less than that of the 

ACD-based MSDD.The gap approaches 3 dB for M = 8 and 16. However we still expect the proposed MSDD 

to outperform the ACD receiver. This is because the latter reaches the 3 dB  gap when the AWGN is 

vanishingly small, whereas the proposed receiver does not require this extra condition. 

 

IV. Conclusion 
 Carrier frequency variation was shown to deteriorate the amplitude and the phase of a PSK signal 

transmitted over an AWGN channel.  A MSDD scheme was proposed for detection of DDPSK signals in the 

presence of random frequency variation and AWGN.  It was shown that the proposed receiver is insensitive to 

constellation rotation due to frequency offset, and is robust to amplitude attenuation provided that the 

frequency offset is not large.  A lower bound on the error probability of the proposed receiver was derived. It 

was shown that the bound is quite tight for the case where the observation interval approaches infinity.  It was 

also shown that the proposed receiver outperforms and ACD receiver when the number of received samples 
contributing to the detection process becomes large. 
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