
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

ISSN: 2278-2834, ISBN: 2278-8735. Volume 4, Issue 2 (Nov. - Dec. 2012), PP 01-06
www.iosrjournals.org

www.iosrjournals.org 1 | Page

Design and Implementation Based On Amba4.0 Of Apb Bridge

G.Madhuri
1
, P. Sharmila Rani

2
, Jeevan Reddy K

3
, Vasuja Devi Midasala

4

2,3 Associate Professor, 4Assistant Professor,
1,2,3,4 Dept. of ECE, TeegalaKrishnaReddy Engineering College, Andhra Pradesh, India

Abstract: ARM introduced the Advanced Microcontroller Bus Architecture (AMBA) 4.0 specifications which

includes Advanced eXtensiable Interface (AXI) 4.0. AMBA bus protocol has become the de facto standard SoC

bus. That means more and more existing IPs must be able to communicate with AMBA4.0 bus. Based on AMBA

4.0 bus, we designed an Intellectual Property (IP) core of Advanced Peripheral Bus (APB) Bridge, which
translates the AXI4.0-lite transactions into APB 4.0 transactions. The bridge provides an interfaces between the

high-performance AXI bus and low-power APB domain.

Keywords: SoC, AMBA, AXI, APB

I. Introduction
 There are many companies that develop core IP for SoC products. The interfaces to these cores can

differ from company to company and can sometimes be proprietary in nature. The SoC developer then must

expend time, effort, and money to create “bridge” or “glue” logic that allows all of the cores inside the SoC to

communicate properly with each other. Incompatible interfaces are thus barriers to both IP developers and SoC
developers.

 Integrated circuits have entered the era of System-on-a-Chip (SoC), which refers to integrating all

components of a computer or other electronic system into a single chip. It may contain digital, analog, mixed-

signal, and often radio-frequency functions – all on a single chip substrate. With the increasing design size, IP is

an inevitable choice for SoC design. And the widespread use of all kinds of IPs has changed the nature of the

design flow, making On-Chip Buses (OCB) essential to the design.

 Of all OCBs existing in the market, the AMBA bus system is widely used as the de facto standard SoC

bus. On March 8, 2010, ARM announced availability of the AMBA 4.0 specifications. As the de facto standard

SoC bus, AMBA bus is widely used in the high-performance SoC designs..

 ARM introduced the Advanced Microcontroller Bus Architecture (AMBA) 4.0 specifications in March 2010,

which includes Advanced extensible Interface (AXI) 4.0. AMBA bus protocol has become the de facto standard

SoC bus. That means more and more existing IPs must be able to communicate with AMBA 4.0 bus. Based on
AMBA 4.0 bus, This design is an Intellectual Property (IP) core of AXI(Advanced extensible Interface) Lite to

APB(Advanced Peripheral Bus) Bridge, which translates the AXI4.0-lite transactions into APB 4.0

transactions. The bridge provides interfaces between the high-performance AXI bus and low-power APB

domain.

II. Literature Review
 Advanced Microcontroller Bus Architecture (AMBA) specification defines an on chip communications

standard for designing high-performance embedded microcontrollers. AMBA has 4 versions as follows

 1. VER1.0 (ASB & APB)
 2. VER 2.0 (AHB)

 3. VER 3.0 (AXI, ATB)

 4. VER 4.0 (AXI 4,AXI LITE,AXI STREAM (AXI))

 AMBA 4.0 specification buses/interfaces

1. Advanced eXtensible Interface (AXI)

2. Advanced High-performance Bus (AHB)

3. Advanced System Bus (ASB)

4. Advanced Peripheral Bus (APB)

5. Advanced Trace Bus (ATB)

In this project these are to be used Advanced eXtensible Interface (AXI4-Lite) & Advanced Peripheral Bus

(APB) because these are high bandwidth data transfer between high performance devices like processor, DMA,
RAM etc..,. and Peripheral devices.

Design and Implementation Based On Amba4.0 of Apb Bridge

www.iosrjournals.org 2 | Page

III. Top View
3.1. Block Diagram

 The AXI4-Lite to APB Bridge provides an interface between the high-performance AXI domain and

the low power APB domain. It appears as a slave on AXI bus but as a master on APB that can access up to
sixteen slave peripherals. Read and write transfers on the AXI bus are converted into corresponding transfers on

the APB. The AXI4-Lite to APB bridge Block diagram is shown in Figure1

Figure1. AXI to APB Bridge Block Diagram

 Features of bridge

The Xilinx AXI to APB Bridge is a soft IP core with these features:

1. AXI interface is based on the AXI4-Lite specification

2. APB interface is based on the APB3 specification, supports optional APB4 selection

3. Supports 1:1 (AXI:APB) synchronous clock ratio

4. Connects as a 32-bit slave on 32-bit AXI4-Lite

5. Connects as a 32-bit master on 32-bit APB3/APB4

6. Supports optional data phase time out.

3.1.1 AXI4-Lite Slave Interface

 The AXI4-Lite Slave Interface module provides a bi-directional slave interface to the AXI. The AXI

address and data bus widths are always fixed to 32-bits and 1024bits.

 When both write and read transfers are simultaneously requested on AXI4-Lite, the read request is

given more priority than the write request. This module also contains the data phase time out logic for generating

OK response on AXI interface when APB slave does not respond.

3.1.2 APB Master Interface

 The APB Master module provides the APB master interface on the APB. This interface can be APB3 or

APB4, which can be selected by setting the generic C_M_APB_PROTOCOL. When

C_M_APB_PROTOCOL=apb4, the M_APB_PSTRB, and M_APB_PPROT signals are driven at the APB
Interface. The APB address and data bus widths are fixed to 32-bits.

3.2 Signal Connections

Figure2 shows the component signal connections. The bridge uses:

• AMBA AXI-Lite and APB signals as described in the AMBA AXI-Lite 4.0 protocol specification.

Figure 2. Signal Connection

Design and Implementation Based On Amba4.0 of Apb Bridge

www.iosrjournals.org 3 | Page

3.3. Handshake Mechanism of AXI & APB
 In AXI 4.0 specification, each channel has VALID and READY signals for handshaking. The source

asserts VALID when the control information or data is available. The destination asserts READY when it can

accept the control information or data. Transfer occurs only when both the VALID and READY are asserted.

Figure3 Shows all possible cases of VALID/READY handshaking. Note that when source asserts VALID, the

corresponding control information or data must also be available at the same time. The arrows in Figure.

Indicate when the transfer occurs. A transfer takes place at the positive edge of clock. Therefore, the source
needs a register input to sample the READY signal. In the same way, the destination needs a register input to

sample the VALID signal. Considering the situation of last Figure, we assume the source and destination use

output registers instead of combination circuit, they need one cycle to pull low VALID/READY and sample the

VALID/READY again at T4 cycle. When they sample the VALID/READY again at T4, there should be another

transfer which is an error. Therefore source and destination should use combinational circuit as output. In short,

AXI protocol is suitable register input and combinational output circuit.

 The APB Bridge buffers address, control and data from AXI4-Lite, drives the APB peripherals and

returns data and response signal to the AXI4-Lite. It decodes the address using an internal address map to select

the peripheral. The bridge is designed to operate when the APB and AXI4-Lite have independent clock

frequency and phase. For every AXI channel, invalid commands are not forwarded and an error response

generated. That is once a peripheral accessed does not exist, the APB Bridge will generate DE CERR as
response through the response channel (read or write). And if the target peripheral exists, but asserts PSLVERR,

it will give a SLVERR response.

Figure3. Waveforms for handshaking mechanism

3.4 Finite State Machine

 A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a state machine, is
a mathematical model used to design computer programs and digital logic circuits. It is conceived as an abstract

machine that can be in one of a finite number of states. The machine is in only one state at a time; the state it is

in at any given time is called the current state. It can change from one state to another when initiated by a

triggering event or condition, this is called a transition. A particular FSM is defined by a list of the possible

transition states from each current state, and the triggering condition for each transition.

Figure4. Operational activity of the APB.

http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/Digital_logic
http://en.wikipedia.org/wiki/State_(computer_science)

Design and Implementation Based On Amba4.0 of Apb Bridge

www.iosrjournals.org 4 | Page

The state machine operates through the following states:

IDLE: This is the default state of the APB.

SETUP: When a transfer is required the bus moves into the SETUP state, where the appropriate select signal,

PSELx, is asserted. The bus only remains in the SETUP state for one clock cycle and always moves to the

ACCESS state on the next rising edge of the clock.

ACCESS: The enable signal, PENABLE, is asserted in the ACCESS state. The address, writes, select, and

write data signals must remain stable during the transition from the SETUP to ACCESS state.
Exit from the ACCESS state is controlled by the PREADY signal from the slave:

• If PREADY is held LOW by the slave then the peripheral bus remains in

the ACCESS state.

• If PREADY is driven HIGH by the slave then the ACCESS state is exited and the bus returns to the IDLE

state if no more transfers are required.

3.5 Simulation

The Timing Diagram shows the AXI4Lite to APB bridge operation for various read and write transfers. It shows

that when both read and write requests are active, read is given more priority than write

.

Figure5.Write side

Figure6.Read side

3.6 Synthesis Result

---- Source Parameters

Input File Name : "apb_bridge_cha.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO
---- Target Parameters

Output File Name : "apb_bridge_cha"

Output Format : NGC

Target Device : xc3s500e-4-fg320

---- Source Options

Top Module Name : apb_bridge_cha

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes
RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Design and Implementation Based On Amba4.0 of Apb Bridge

www.iosrjournals.org 5 | Page

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES

Asynchronous To Synchronous : NO

Multiplier Style : auto
Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 24

Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes
Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

===

HDL Synthesis Report

Macro Statistics

RAMs : 3

 256x32-bit dual-port RAM : 3

Counters : 6

 8-bit up counter : 6

Registers : 69

 1-bit register : 49

 32-bit register : 10
 4-bit register : 4

 8-bit register : 6

Latches : 3

 1-bit latch : 3

Comparators : 3

 8-bit comparator equal : 3

Multiplexers : 1

 32-bit 4-to-1 multiplexer : 1

Xors : 12

 1-bit xor2 : 6

 7-bit xor2 : 6
===

Advanced HDL Synthesis Report

Macro Statistics

RAMs : 3

 256x32-bit dual-port distributed RAM : 3

Counters : 6

 8-bit up counter : 6

Registers : 433

 Flip-Flops : 433

Latches : 3

 1-bit latch : 3
Comparators : 3

 8-bit comparator equal : 3

Multiplexers : 1

 32-bit 4-to-1 multiplexer : 1

Xors : 12

 1-bit xor2 : 6

 7-bit xor2 : 6

Design and Implementation Based On Amba4.0 of Apb Bridge

www.iosrjournals.org 6 | Page

===

* Final Report *

===

TIMING REPORT

Timing Summary:

Speed Grade: -4

 Minimum period: 5.254ns (Maximum Frequency: 190.331MHz)
 Minimum input arrival time before clock: 5.198ns

 Maximum output required time after clock: 4.394ns

 Maximum combinational path delay: No path found

CPU : 21.40 / 21.99 s | Elapsed : 21.00 / 22.00 s

Total memory usage is 222952 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings : 24 (0 filtered)

Number of infos : 14 (0 filtered)

IV. Conclusion
 The Implementation APB Bridge is designed in this project. Verilog has been used for implementing

the bridge. The bridge has the low cost interface optimized for minimal power consumption and reduced

interface complexity.

An implementation of AXI4-Lite to APB bridge which has the following features:

 32-bit AXI slave and APB master interfaces.

 PCLK clock domain completely independent of ACLK clock domain.

 Support up to 16 APB peripherals.

 Support the PREADY signal which translate to wait states on AXI.

 An error on any transfer results in SLVERR Bus the AXI read/write response.



V. Acknowledgement
 I G. Madhuri would like to thank Associate Prof P. Sharmila Rani, who had been guiding through out

to complete the work successfully, and would also like to thank the K. Jeevan Reddy HOD, ECE Department

and other Professors for extending their help & support in giving technical ideas about the paper and motivating

to complete the work effectively & successfully.

References
[1] Design and Implementation of APB Bridge based on AMBA 4.0 (IEEE 2011), ARM Limited.

[2] http://en.wikipedia.org/wiki/System_on_a_chip#Structure
[3] Power.org Embedded Bus Architecture Report Presented by the Bus Architecture TSC Version 1.0 – 11 April 2008
[4] http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
[5] ARM, "AMBA Protocol Specification 4.0", www.arm.com, 2010 ARM,AMBA Specification (Rev 2.0).AMBA® 4

AXI4™, AXI4-Lite™, and AXI4-Stream™ Protocol Assertions Revision: r0p0 User Guide.
[6] AMBA® APB Protocol Version: 2.0 Specifications.
[7] ASB Example AMBA System Technical Reference Manual Copyright © 1998-1999 ARM Limited.
[8] AHB to APB Bridge (AHB2APB) Technical Data Sheet Part Number: T-CS-PR-0005-100 Document Number: I-

IPA01-0106-USR Rev 05 March 2007.

[9] LogiCORE IP AXI to APB Bridge (v1.00a) DS788 June 22, 2011 Product Specification.
[10] Simulation and Synthesis Techniques for Asynchronous FIFO Design Clifford E.Cummings, Sunburst Design, Inc.

SNUG San Jose 2002 Rev 1.2., FIFO Architecture, Functions, and Applications SCAA042A November 1999.
[11] ARM, "AMBA Protocol Specification 4.0", www.arm.com, 2010.
[12] Ying-Ze Liao, "System Design and Implementation of AXI Bus", National Chiao Tung University, October 2007.
[13] Clifford E. Cummings, "Coding And Scripting Techniques For FSM Designs With Synthesis-Optimized, Glitch-Free

Outputs," SNUG (Synopsys Users Group Boston, MA 2000) Proceedings, September 2000.
[14] Clifford E. Cummings, “Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs,”

SNUG 2001
[15] Simulation and Synthesis Techniques for Asynchronous FIFO Design Clifford E.Cummings, Sunburst Design, Inc.

SNUG San Jose 2002 Rev 1.2.,
[16] Lahir, K., Raghunathan A., Lakshminarayana G., “LOTTERYBUS: a new high-performance communication

architecture for system-on-chip deisgns,” in Proceedings of Design Automation Conference, 2001.
[17] Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, “A new multi-channel onchip-bus architecture for system-on-chips,” in

Proceedings of IEEE International SOC Conference, September 2004.

http://en.wikipedia.org/wiki/System_on_a_chip#Structure
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

