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Abstract: Skilled navigation in mobile robotics usually re-quires solving two problems pertaining to the 

knowledge of the position of the robot, and to a motion control strategy. When no prior knowledge of the 

environment is available, the problem becomes even more challenging, since the robot has to build a map of its 

surroundings as it moves. These three tasks ought to be solved in conjunction due to their interdependency. The 

present manuscript proposes a novel mobile robot navigation technique using a customized RFID reader with 

two receiving antennas mounted on the robot and a number of standard RFID tags attached in the robot’s 

environment to define its path. In here, we show that using the RF signal from the RFID tags as an analog 

feedback signals can be a promising strategy to navigate a mobile robot within an unknown or uncertain indoor 
environment. This method is computationally simpler and more cost-effective than many of its counterparts in 

the state of the art. It is also modular and easy to implement since it is independent of the robot’s architecture 

and its workspace. A set of numerical computer simulations are provided to illustrate the effectiveness of the 

proposed scheme. 
Index Terms— RFID, Phase Difference, Fuzzy Logic Con-troller, Robot Sensing and Perception. 
 

I. Introduction 
Navigation is one of the main modules in a mobile robotic system. A large body of research works has 

been conducted in the field of mobile robot navigation. The most common and popular navigation methods pro-

posed in the literature to date rely on dead-reckoning-based, landmark-based, vision-based, and behavior-based 

techniques. Among the common problems pertaining to these techniques is that they depend on complex image 

processing algorithms, expensive hardware, and/or a priori knowledge of the environment. 
The fundamental idea behind dead-reckoning naviga-tion systems is the integration of incremental 

motion over time [2]. In this navigation method a small precision errors and sensor drifts inevitably lead to 

increasing cumulative errors in the robot’s position and orientation, unless an independent reference is used 

periodically to correct the error [3]. The studies in [4], [5] are developed based on the integration of dead-

reckoning and visual land mark recognition methodologies for the navigation control of a vehicle along a 

predetermined path in a forest. The indoor mobile robot navigation presented in [6] uses global ultrasonic 

system for the robot’s position estimation while navigating in an environment 
Hallmannetal. [7] developed a mobile robot B14 to navigate in a partially known environment. The vehicle 

is equipped with 16 sonar, 16 infrared sensors, an on-board Pentium computer, and a gray-scale camera in which a 

map of the robot’s environment is built based on the information fed by the sonar and infrared sensors mounted on the 
robot. In addition to artificial landmarks, natural landmarks have also been exploited in a number of robot navigation 

algorithms. For instanceBetge-Brezetzetal. [8] focused on the high level representation of the natural scene to guide a 
mobile robot in a priori unknown environment. The landmarks in this case are defined as natural objects 

extractedfrom perceptual data. A similar algorithm for natural landmark extraction from sonar data streamed from a 
mobile platform is developed in [9]. In there, the robot has to have complex image processing and pattern recognition 

algorithms to locate itself in its workspace. Some researchers shifted their attention to other types of vision-based 
navigation methods to improve the robot position estimation by tracing the visual features in the environment and 

using them as landmarks [10]. This measurement usually returns bearing to the visual features only, with no a priori 

knowledge of the landmark positions. Nevertheless, such a technique also has its own disadvantages, which include 
the lack of information depth, complex image processing algorithms with high computational burden, and its 

dependence on the working environment. A number of the aforementioned paradigms were accompanied with tools of 
computational intelligence, such as fuzzy logic, artificial neural networks, genetic algorithms, and several 

combinations of them. For example, a genetic algorithm was used in [11] to design a mobile robot navigation 
framework. However, among the main drawbacks of this strategy, and of genetic-algorithm-based approaches in 

general, is that it is non-deterministic and hence cannot operate in real-time. Fuzzy logic controllers were also tested 
in [12], [13] for the navigation of single and multiple mobile robots, respectively, with the ability to avoid collision in 

a dynamic environment. 

Recent attempts in the area of mobile robot navigation have witnessed an increasing interest in the 

emerging.RFID technology as a promising alternative to the afore-mentioned strategies, thanks to its ease of 

use, flexibility, and low cost. RFID tags were used as artificial land-marks placed in particular locations in the 
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workspace to communicate with robots equipped with RFID readers to estimate their positions in 

environment.Khubitzetal. [14] presented a navigation system that uses RFID tags as artificial landmarks. The 

tags’ global positions, environ-ment class, environment position, and further optional data, are pre-stored in the 

tags’ memory. Some navigation systems in man-made environments, such as hallways, were developed in [15], 

[16], where RFID tags are used as artificial landmarks for a mobile robot that is equipped with an on-board 

laptop computer, an RFID tag sensor and a vision system. The RFID reader is mounted on the robot itself while 

the tags are pasted at particular locations on walls. However, such a methodology is specific to a particular 
workspace and requires a substantial amount of customization for it to operate in a new environment. Chaeetal. 

[17] proposed a mobile robot localization method with the help of a combination of RFID and vision 

technologies. The global localization of the robot is performed by incorporating signal detection from artificial 

landmarks represented by the RFID tags. Although this algorithm offers an efficient localization method, it 

naturally inherits the typical shortcomings of vision-based techniques in general. So, In most cases where RFID 

systems were applied to mobile robot systems, they were mainly used for robot localization and not for 

navigation [18]. 
The current manuscript describes a novel navigation technique that uses a customized two-antenna 

RFID reader mounted on the robot and a number of tags attached in the robot’s workspace. The tags are used to 

define the desired trajectory of the robot. The aim of the navigation algorithm is then to make the robot navigate 

along the virtual paths linking the orthogonal projection points of the tags on the ground. The reader 
continuously sends RF signals to the tags in its operating region and receives some analog information 

represented in the “phase difference” of the received signal. This analog signal is used to determine the relative 

position of the robot with respect to the tags. The phase difference is then passed to the fuzzy logic controller to 

provide necessary control actions to the actuators of the mobile robot. It is important to note, however, that due 

to the excessive noise characterizing RF signals in general, the computer simulations are based on a noisy model 

of the RF signal received by the reader. Unlike many previous studies of this kind reported in the literature, 

there is no restriction on where the tags should be mounted. For indoor applications, they can be mounted on the 

ceiling, whereas in outdoors they can be mounted on posts or walls, for example. It is worth pointing out that a 

mobile robotic system is typically composed of various modules, such as a localization module, navigation 

module, path planner, obstacle detection module, etc. (Fig. 1). Never-theless, the present paper tackles the 

problems of robot localization and navigation only. 
The rest of the manuscript is organized as follows: Section II illustrates the overall architecture of our 

proposed navigation system. The different steps of the navigation algorithm are described in section III. The 

performance of the proposed algorithm is demonstrated through a series of numerical simulations presented in 

section IV. Finally, conclusions are drawn in section V. 
 

II. System  Architecture 
The proposed navigation system consists of two fundamental modules: an RFID communication 

module and a Fuzzy Logic Controller (FLC) navigation module. The RFID communication module is 

responsible for communicating with the tags (or transponders) through an RFID reader with two receiving 

antennas mounted on the robot. A high level system configuration setup of the current navigation technique is 

depicted in Fig. 2, where two RFID tags, T1 and T2, are attached on the ceiling. The robot’s desired trajectory is 

the straight-line segment connecting the orthogonal projection points, A and B, of tags T1 and T2, respectively. 

The robot employs the FLC module in order to provide the necessary control action to its actuators, which is 

required to move the robot from one point to another in its workspace. Consider a scenario where the robot is 

presented with a desired trajectory defined by an ordered sequence of tag IDs, like (00,01), for instance, then it 

first navigates to the orthogonal projection point of the tag with ID 00, then it moves along the virtual straight 

line linking the orthogonal projection points of tag IDs 00 and 01, where it will stop. The novelty in this 

navigation scheme is that it is independent of the tag positions, odometry information, and structure of the 

working environment. 
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Figure  2.   High-level  system  configuration  with  two  RFID  tags. 
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A.   RFID  Communication  Module 
Before starting the mission, the robot sends time-multiplexed single-tone sinusoidal signals with 

different frequencies, and then listens to the backscattered sig-nals from the RFID tags. The high level 

architecture of the custom-designed RFID communication module is depicted in Fig. 3. Preliminary studies 

were conducted to confirm the fact that using a custom-built RFID reader with two receiving antennas can 

determine the relative position of the tag (left or right) with respect to the readermounted on the robot. Let φ1 

and φ2 be the phase angles of the signal received by the reader’s receiving antennas 1 and 2, respectively. The 

phase difference, ∆φ, is then defined by 

∆φ = φ1  −φ2. (1) 

 
This phase difference is then passed to the FLC in order to decide on the robot’s direction. 
 
B.   Fuzzy  Logic  Controller 

The purpose of the FLC in the current navigation algorithm is to provide intelligent actions to be taken 

by the robot. In the current work, we use a single-input single-output Mamdani-type FLC as shown in Fig. 4. 

The aim of the FLC is to decide on the amount of tuneup∆θthat the robot has to apply to its current directionθ to 

converge to its target position. The FLC’s input isthe phase difference ∆φ provided by the two directional 

antennas mounted to the RFID reader on the robot. The robot then uses this information to update its direction 

following the update rule (2). 

 

 

 

 

 

  

 

 
 

The fuzzification and defuzzification membership func-tions are taken as linear triangular and trapezoidal mem-

bership functions for their higher computational efficiency [19], as depicted in Fig. 5. An empirical analysis was 
performed to optimize these membership function parameters to improve the FLC’s performance. The “min” and 

“max” operators are adopted as the t-norm and s-norm operators, while the defuzzification method is set to be the 
center of area. 
 

 

   θ(new)=θ(old)+ ∆θ (2) 
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 Figure  4. FLC  model  used  by  the  mobile  robot.  
 



A  Mobile Robot Navigation System Using RFID Technology 

www.iosrjournals.org                                                             18 | Page 

 
 

supposed to turn left/right (CCW/CW, for counter-clock wise and clock-wise, respectively) if the RFID tag is on 

the left/right of the receiving antenna, where ∆φ is negative and positive, respectively.then the robot simply 
stops. If not, the algorithm restarts from Step 2. 
A thorough evaluation of this algorithm’s performance is provided in the following section. 
 

III.         Proposed  Navigation  Algorithm 
This section explains how the modules described above fit into the overall navigation framework. The 

efficient coordination among the RFID communication module, FLC, and different actuators of the robot allows 

it to have less computational overhead while being executed on the robot’s processor. The following is a 

description of the different steps of the algorithm. 
Step 1: The robot is pre-programmed with an ordered listof tag ID numbers defining its desired path. 
Step 2: The target tag of the current navigation phaseis determined from the ordered list of tags defining the 

complete robot’s desired path. 
Step 3: Once the target tag is known, the robot scansthrough the signals backscattered from all the tags within 

its communication range and records the phase angles φ1 and φ2 of the signal coming from the tag representing 

the target tag at that time instant. 
Step 4: The phase difference,∆φ, of the destination tag’ssignal is calculated as defined in (1). ∆φ is then passed 

to the FLC to quantize the tuneup the robot has to apply to its direction to better direct itself towards its 

destination. The robot updates its heading as in (2) and dispatches the required control action to its relevant 

actuators. 
Step 6: Once the robot reaches the destination tag, itchecks for more available destination tag IDs in the desired 

path. If the current destination tag is the last tag, 
 

A. Following  a  Two-segment  Path 

This experiment is performed by placing three tags on the ceiling which defines a two-segment path on 

the ground. The robot is initially placed under the first tag , Tag 1, heading towards the projection of Tag 2 on 

the ground. The initial orientation of the robot in this case is 180 degrees. The actual and desired trajectories of 
the robot are depicted in Fig. 7(a). First, the robot’s mission is to navigate along the line-segment connecting the 

orthogonal projection points of Tag 1 and Tag 2. Once the robot reaches Tag 2, it tuned its direction towards 

Tag 3 as its final destination point. The tracking error e(t) along this pathway is shown in Fig. 7(b). The 

sign(positive/negative) of the error indicates the side on which the robot is located with respect to the desired 

line-segment. As can be seen, the error increases around the corners before the robot realizes that it is diverging 

from its path and tunes its heading to converge back to it. 
In order to show the effectiveness of the proposed algo-rithm regardless of its initial orientation, this 

experiment is repeated by placing the robot right under Tag 1 with an initial orientation of 90 degrees. Figs. 8(a) 

and 8(b) show that the robot is capable of achieving its goal despite the noisy RF feedback signals from the tags. 

The RMSE recorded for both experiments are 0.12 m and 0.21 m, respectively. The robot’s navigation time for 

each individual segment of the path is summarized in Table I. 
 

B.   Following  a  Complex  Path 
The purpose of this experiment is to study the algo-rithm’s performance in guiding the mobile robot 

along a more complex path. In order to accomplish such a mission, four equidistant RFID tags are attached on 

the ceiling. The actual and desired trajectories for this test are shown in Fig. 9(a). The initial position of the 
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robot is right under Tag 1 while heading towards Tag 2. The robot has to complete the path connecting the 

orthogonal projection points of Tag 1 – Tag 2 – Tag 3 – Tag 4 – Tag 1. The corresponding trajectory tracking 

error is shown in Fig. 9(b). This experiment demonstrates the fact that the proposed algorithm has the ability to 

guide a mobile robot along a desired trajectory regardless of the path’s complexity. Although the RMSE over 

the full path was 0.18 m, most of the error was transient and due to corner turns. The navigation time to 

complete this path is given in Table I. 
 

IV.       Simulations And Results 
Two different experiments are carried out to test the performance of the proposed navigation algorithm. 

The first experiment aims at evaluating the algorithm’s ability to guide the mobile robot along a two-segment 

path regardless of its initial orientation. The second experiment demonstrates the algorithm’s performance in 

tracking a complex path. The simulations are conducted using the 3-D simulation platform Simbad.1The robot’s 

workspace considered in the simulation is an external obstacle-free environment with all the RFID tags attached 

to a 3 m height ceiling. It is important to point out that it is not the aim of this research to tackle the obstacle 

avoidance problem. This can be achieved by a separate module that can be added to the current architecture. The 

translational and rotational velocities of the robot are set to 0.2 m/s and 0.4 rad/s, respectively.In the current 
work, a noisy RF signal is adopted to better demonstrate the effectiveness of the navigation algorithm. The 

phase difference of the received signal is considered to be highly contaminated by the ambient noise from the 

environment. The noise model used in the simulation is shown in Fig. 6. As can be seen, the noise of the phase 

difference tends to increase with respect to the distance between the reader and the tag. 

 

 
Figure 7.Algorithm’s performance in a two-segment path with an initial orientation of 180 degrees. (a) Actual and desired trajectories; 

(b)  Tracking  errors. 
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V.       Conclusion 
 A novel RFID-based robot navigation system is pro- posed in this paper this sequence is then broken into a 

sequence of ordered pairs of IDs each of which represents a line segment of the overall trajectory. The mobile 

robot tracks each segment by continuously assessing the phase difference of the RF signals at the reader’s two 
receiving antennas coming from the current segment’s target tag. An FLC is adopted to compute the control 

effort necessary for the robot actuators to tune its orientation appropriately. Computer simulations were run to 

demonstrate the algorithm’s effi-ciency in tracking various paths of different complexities despite the noise in 

the RF feedback signal.  
 

 
The proposed algorithm is very modular as it can be easily implemented on virtually any type of robotic systems 

and working environments. It is computationally inexpensive as it is free of any visual data processing 
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