
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 5, Issue 5 (Mar. - Apr. 2013), PP 34-39
www.iosrjournals.org

www.iosrjournals.org 34 | Page

Digital Implementation of Artificial Neural Network for Function

Approximation and Pressure Control Applications

Sangeetha T
#1

, Meenal C
#2

1,2 Department of Electronics and Communication Engineering
1PG Scholar, Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu, India.

2Assistant Professor, Mount Zion College of Engineering & Technology, Pudukkottai, TamilNadu India

Abstract: The soft computing algorithms are being nowadays used for various multi input multi output

complicated non linear control applications. This paper presented the development and implementation of back

propagation of multilayer perceptron architecture developed in FPGA using VHDL. The usage of the FPGA

(Field Programmable Gate Array) for neural network implementation provides flexibility in programmable

systems. For the neural network based instrument prototype in real time application. The conventional specific

VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network
design, FPGA have higher speed and smaller size for real time application than the VLSI design. The

challenges are finding an architecture that minimizes the hardware cost, maximizing the performance,

accuracy. The goal of this work is to realize the hardware implementation of neural network using FPGA.

Digital system architecture is presented using Very High Speed Integrated Circuits Hardware Description

Language (VHDL)and is implemented in FPGA chip. MATLAB ANN programming and tools are used for

training the ANN. The trained weights are stored in different RAM, and is implemented in FPGA. The design

was tested on a FPGA demo board.

Keywords- Backpropagation, field programmable gate array (FPGA) hardware implementation, multilayer

perceptron, pressure sensor, Xilinx FPGA.

I. Introduction
 Implementation of ANNs falls into two categories: Software implementation and hardware

implementation. ANNs are implemented in software, and are trained and simulated on general-purpose

sequential computers for emulating a wide range of neural networks models. Software implementations offer

flexibility. However hardware implementations are essential for applicability and for taking the advantage of

ANN’s inherent parallelism. Specific-purpose fixed hardware implementations(i.e. VLSI) are dedicated to a

specific ANN model. VLSI implementations of ANNs provide high speed in real time applications and

compactness. However, they lackflexibility for structural modification and are prohibitively costly.
 Software implementations can be quickly constructed, adapted, and tested for a wide range of

applications. However, in some cases, the use of hardware architectures matching the parallel structure of ANNs

is desirable to optimize performance or reduce the cost of the implementation, particularly for applications
demanding high performance. Unfortunately, hardware platforms suffer from several unique disadvantages such

as difficulties in achieving high data precision with relation to hardware cost, the high hardware cost of the

necessary calculations, and the inflexibility of the platform as compared to software.
 In this work, aimed address some of these disadvantages by developing and implementing a field

programmable gate array (FPGA)-based architecture of a neural network with learning capability. Exploiting

the reconfigurability of FPGAs, we are able to perform fast prototyping of hardware-based ANNs to find

optimal application specific configurations. In particular, the ability to quickly generate a range of hardware

configurations gives us the ability to perform a rapid design space exploration navigating the cost/speed/accu-

racy tradeoffs affecting hardware-based ANNs.

II. ARTIFICIAL NEURAL NETWORKS (Anns)
 Artificial neural networks (ANN’s, or simply NN’s) are inspired by biological nervous systems and

consist of simple processing elements (PE, artificial neurons) that are interconnected by weighted connections.

The predominantly used structure is a multilayered feed-forward network (multilayer perception),i.e., the nodes

(neurons) are arranged in several layers (input layer, hidden layers, output layer), and the information flow is

only between adjacent layers [4].An artificial neuron is a very simple processing unit. It calculates the weighted

sum of its inputs and passes it through a nonlinear transfer function to produce its output signal.The

predominantly used transfer functions are so-called “sigmoid” or “squashing” functions that compress an
infinite input range to a finite output range, e.g., [-1, +1].

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure

www.iosrjournals.org 35 | Page

 Fig.1 processing element Fig.2 Multilayer perception model

 Neural networks can be “trained” to solve problems that are difficult to solve by conventional computer

algorithms. Training refers to an adjustment of the connection weights, based on a number of training examples

that consist of specified inputs and corresponding target outputs. Training is an incremental process where after
each presentation of a training example, the weights are adjusted to reduce the discrepancy between the network

and the target output. Popular learning algorithms are variants of gradient descent (e.g., error-backpropagation) ,

radial basis function adjustments [4], etc. Neural networks are well suited to a variety of nonlinear problem

solving tasks. For example, tasks related to the organization, classification, and recognition of large sets of

inputs.

2.1 Multilayer Perceptrons (MLPs)

 MLPs (Fig. 2) are layered fully connected feed-forward networks. That is, all PEs (Fig. 1) in two

consecutive layers are connected to one another in the forward direction.

 During the network's forward pass each PE computes its outputykfrom the input ik it receives from each PE

in the preceding layer as shown here

yk=)(vkk (1)

where k is the squashing function of PE k whose role is to constrain the value of the local field

vk=  kwkjikj  (2)

Wkj is the weight of the synapse connecting neuron k to neuron j in the previous layer, and k k is the bias of

neuron k. Equation (1) is computed sequentially by layer from the first hidden layer which receives its input

from the input layer to the output layer, producing one output vector corresponding to one input vector.

 The network’s behavior is defined by the values of its weights and bias. It follows that in network

training the weights and biases are the subjects of that training. Training is performed using the backpropagation
algorithm after every forward pass of the network.

2.2 Backpropagation Algorithm

 The backpropagation learning algorithm allows us to compute the error of a network at the output,

then propagate that error backwards to the hidden layers of the network adjusting the weights of the neurons

responsible for the error. The network uses the error to adjust the weights in an effort to let the output yj

approach the desired output dj.

 Backpropagation minimizes the overall network error by calculating an error gradient for each neuron

from which a weight change ∆wjiis computed for each synapse of the neuron. The error gradient is then

recalculated and propagated backwards to the previous layer until weight changes have been calculated for all

layers from the output to the first hidden layer.

 The weight correction for a synaptic weight connecting neuron i to neuron j mandated by backpropagation is
defined by the delta rule

∆wji= jyi (3)

where is the learning rate parameter, j is the local gradient of neuron j, and yi is the output of neuron i in the

previous layer.

Calculation of the error gradient can be divided into two cases: for neurons in the output layer and for neurons in

the hidden layers. This is an important distinction because we must be careful to account for the effect that

changing the output of one neuron will have on subsequent neurons. For output neurons, the standard definition

of the local gradient applies

)(' vjjejj   (4)

 For neurons in a hidden layer, we must account for the local gradients already computed for neurons in the

following layers up to the output layer. The new term will replace the calculated error e since, because hidden

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure

www.iosrjournals.org 36 | Page

neurons are not visible from outside of the network, it is impossible to calculate an error for them. So, we add a

term that accounts for the previously calculated local gradients

 kwkjvjjj )(' (5)

Wherej is the hidden neuron whose new weight we are calculating, and k is an index for each neuron in the next

layer connected to j.

 As we can see from (4) and (5), we are rewe are required to differentiate the activation function j with

respect to its own argument, the induced local field vj. In order for this to be possible, the activation function

must of course be differentiable. This means that we cannot use non continuous activation functions in a back-

propagation-based network. Two continuous, nonlinear activation functions commonly used in back

propagation networks are the sigmoid function

)(vj 1∕1+e-avj (6)

 Training is performed multiple times over all input vectors in the training set. Weights may be updated

incrementally after each input vector is presented or cumulatively after the training set in its entirety has been

presented (one training epoch). This second approach, called batch learning, is an optimization of the back

propagation algorithm designed to improve convergence by preventing individual input vectors from causing

the computed error gradient to proceed in incorrect direction.

III. Field Programmable Gate Array And Very High Hardware Description Language

 FPGAs consist of three basic blocks that are configurable logic blocks, in-out blocks and connection

blocks. Logic blocks perform logic function. Connection blocks connect logic blocks with in-out blocks. These

structures consist of routing channels and programmable switches. Routing process is effectively connection

logic blocks exist different distance the others [6].

 FPGAs are chosen for implementation ANNs with the following reason:

 They can be applied a wide range of logic gates starting with tens of thousands up to few millions gates.
 They can be reconfigured to change logic function while resident in the system.

 FPGAs have short design cycle that leads to fairly inexpensive logic design.

 FPGAs have parallelism in their nature. Thus, they have parallel computing environment and allows logic

cycle design to work parallel.

 They have powerful design, programming and syntheses tools.

The architecture of ANNs must be specified with schematic or algorithmic at first step of FPGAs based

system design. When ANNs based FPGAs system design specify the architecture of ANNs from a symbolic

level. This level allows us using VHDL which stands for VHSIC (Very High Speed Integrated Circuit)

Hardware Programming Language [7]. VHDL allows many levels of abstractions, and permits accurate

description of electronic components ranging from simple logic gates to microprocessors. VHDL have tools

needed for description and simulation which leads to a lower production cost.

IV. Hardware Implementation
4.1 system architecture

 The proposed system architecture is shown in fig.3 The proposed system working principles and

detailed description is given below. The pressure sensor input is in analog nature this analog input is given to

analog to digital converter. The signal conditioning circuit (ADC) convert analog signal into 8 bit digital signal.

This 8 bit digital signal is given to the summing block then set the pressure selection value is given to the

summing block .The summing block act as comparator, the comparator compares the input value and the

reference value and give the difference value and it is denoted by en (error value) . The error value is en is
given to the ANN controller unit here the neural network is designed and trained to using the multilayer

perceptron architecture and the back propagation algorithm. Then compute overall error and the output is given

to digital to analog converter, then the digital to analog converter output is in current form so it is given to the

current to voltage converter. Then the output is given to the modulation block, here pulse width modulation

is done. The modulated signal given to pressure assembly control block. This is compute the overall error and

measure the pressure value and function approximation. The .pressure control driven circuit is used to activate

pressure assembly control block.

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure

www.iosrjournals.org 37 | Page

ADC

Pressure

value

Pressure

sensor

ANN

controller
DAC

PWM I-V Converter

Pressure

Control Driven

Circuit

Pressure

Assembly

control

Σ

XILINX FPGA

M - CLOCK

88 8

8

4

Set pressure

selection

 tn

en
cn

yn

Fig.3. Block diagram of ANN implementation in FPGA

The pipelined architecture for ANN implementation in FPGA is shown in fig.4. Here set the pressure value and

pressure sensor value is given to the 8*1 multiplexer. The multiplexer output 8 bit digital value, and this is

represented by tn. This value is given to the 8 bit magnitude comparator. The comparator compares the pressure

value register and the set pressure value, then the output represented by error(en). The error value is given to

the input layer, then this value is given to the H1 MAC architecture here the input weight is multiplied by w1

register and this value is given to the HI neuron transfer function. and this value is given to the H2 MAC

architectures, then the weight is multiplied by the w2 register and it is given to the H2 transfer function and

the error propagates to hidden layer finally compute the overall error then the output matched with the set the

value . and ANNs are trained to solve the pressure control function approximation.

Pressure

Value

Register

8 Bit

Magnitude

Comparator

Input

Layer

H1 MAC

Architecture

H1 Neuron

Transfer

Function

W1

Register

W2

Register
WO

Register

HO MAC

Architecture

H2 MAC

Architecture

HO Neuron

Transfer

Function

H2 Neuron

Transfer

Function

8 × 1

MUX
8

tn en

÷ CLK

Inverter And

Trigger

Circuit

8

M - CLOCK

ynyn

cn

8

8

8

4

Set Pressure Value

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure

www.iosrjournals.org 38 | Page

V. Experimental Results
The artificial neural network is designed and implement the pressure control application. The network

implementation built using the MATLAB neural network tool box and find the minimum mean square error.

0 5 10 15 20 25 30
0

5

10

15

20

25

30
Behavior of Unknown System

Pressure(Pa)

A
rb

itr
ar

y
O

ut
pu

t
V

ol
ta

ge
 (

v)

 Fig.5. Behavior of unknown system

0 5 10 15 20 25 30
0

5

10

15

20

25

30
Training data and Testing data

Pressure(Pa)

A
rb

itr
ar

y
O

ut
pu

t
V

ol
ta

ge
 (

v)

 Fig.6. Training data and testing data

0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30
Original o/p & NN o/p without training

Pressure(Pa)

A
rb

it
ra

ry
 O

u
tp

u
t

V
o
lt
a
g
e
 (

v
)

Fig 7. Original output and NN output without training

0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30
Original o/p & trained NN o/p

Pressure(Pa)

A
rb

itr
ar

y
O

ut
pu

t
V

ol
ta

ge
 (

v)

Fig.8 originl output and NN output

Fig.9 Neural network training performance

Fig.10 neural network toolbox

0 5 10 15 20 25 30 35
-0.1

-0.05

0

0.05

0.1

0.15
Error profile

Check data points

E
rr

or

Fig.11 Error profile

Digital Implementation of Artificial Neural Network for Function Approximation and Pressure

www.iosrjournals.org 39 | Page

 Fig.12 Simulation Result of Pressure Controller Fig.13 Schematic of Pressure

Controller

VI. Conclusion
In this paper, presented the development and implementation of a pipelined FPGA-based architecture

for feed-forward multilayer perception architecture with back propagation of learning algorithm. In general, it

is shown that implementation of neural networks using FPGAs. The resultant neural networks are modular,

compact, and efficient and the number of neurons, number of hidden layers and number of inputs are easily

changed. However this study shows that FPGAs are versatile devices for implementing many different

applications. The VHDL-FPGA combination is shown to be a very powerful embedded system design tool, with

low cost, reliability. In conclusion, the ANNs are trained and testing the system using the function

approximation for pressure control application. It showed that the system can reach best training performance

i.e9.957at epoch9 and the minimum mean square error is 10-4 .These best training weights are implemented in

FPGA board.

References
[1] M. Paliwal and U. A. Kumar, “Neural networks and statistical techniques: A review of applications,” Expert Systems With

Applications,vol. 36, pp. 2–17, 2009

[2] R. Gadea, R. C. Palero, J. C. Boluda, and A. S. Cortes, “FPGA implementation of a pipelined on-line back propagation,” J. VLSI

SignalProcess., vol. 40, pp. 189–213, 2005.

[3] A. R. Ormondi and J. Rajapakse, FPGA Implementations of Neural Networks. New York: Springer, 2006

[4] M. Tommiska, “Efficient digital implementation of the sigmoid function for reprogrammable logic,” in Proc. IEE Comput. Digital

Tech., 2003, vol.150, pp. 403–4

[5] E. Sanchez, “FPGA implementation of an adaptable-size neural network,” in Proc. Int. Conf. ANN, 1996, vol. 1112, pp. 383–388

[6] J. Li and D.Liang,“A survey of FPGA-based hardware implementation of ANNs,” in Proc. Int. Conf. Neural Networks Brain,

2005, vol. 2, pp. 915–91

[7] R. Gadea, J. Cerda, F. Ballester, and A. Mocholi, “Artificial neural network implementation on a single FPGA of a pipeline on-line

backpropagation,” in Proc. Int. Symp.Syst. Synthesis, 2000, pp. 225–230

[8] P. Ferreiraa, P. Ribeiroa, A. Antunes, and F. M. Dias, “A high bit resolution FPGA implementation of a FNN with a new algorithm

for the activation function,” Neurocomputing, vol. 71, pp. 71–77, 2007.

[9] S.Tatikonda and P.Agarwal, “Field programmable gate array (FPGA) based neural network implementation of motion control and

fault diagnosis of induction motor drive,” in Proc. IEEE Conf. Ind. Tech., 2008, pp. 1–6.

[10] A. Mellit, H.Mekki, A. Messai, and H. Salhi, “FPGA-based implementation of an intelligent simulator for stand-alone

photovoltaic system,” Expert Systems With Applications, vol. 37, pp. 6036–6051, 2010

