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Abstract: This paper  presents an area-time efficient Coordinate Rotation Digital Computer (CORDIC) 

algorithm that completely eliminates the scale-factor. Besides we have proposed an algorithm to reduce the 

number of CORDIC iterations by increasing the number of stages. The efficient scale factor compensation 

techniques are proposed which adversely effect the latency/throughput of computation. The proposed CORDIC 

algorithm provides the flexibility to manipulate the number of iterations depending on the accuracy, area and 

latency requirements. The CORDIC is an iterative arithmetic algorithm for computing generalized vector 

rotations without performing multiplications. 

 Index Terms: coordinate rotation digital computer (CORDIC), cosine/sine, field-programmable gate array 

(FPGA), most-significant-1, recursive architecture, Discrete Fourier Transform (DFT), Discrete Cosine 

transform (DCT), Iterative CORDIC, Pipelined CORDIC. 

 

I. Introduction 
 Year 2009 marks the completion of 50 years of the invention of CORDIC (Coordinate Rotation 

Digital Computer) by Jack E.volder. The beauty of CORDIC lies in the fact that by simple shift-add operations, 

it can perform several computing tasks such as the calculation of trigonometric, hyperbolic and logarithmic 

functions, real and complex multiplications, division, square-root and many others. The CORDIC is an entire-

transfer computer, it contains a special arithmetic unit consisting of three shift registers, three adder- subtractor, 

and special interconnections. The CORDIC is applied in diverse areas such as signal and image processing, 

communication systems, robotics and 3-D graphics etc[1]-[3]. For applications where the angle of rotation is 

known in advance, a method to speed up the execution of the CORDIC algorithm by reducing the total number 

of iterations is presented. This is accomplished by using a technique called angle recoding. The proposed MVR-
CORDIC algorithm (modified vector rotational CORDIC)  will saves the 50% execution time in the iterative 

CORDIC structure, or 50%hardwarecomplexity in the parallel CORDIC structure compared with the 

conventional CORDIC scheme [4]-[6]. The corresponding architectures come for both rotation and vector 

modes and the other only for rotation mode to perform the scaling factor compensation in parallel with the 

classical CORDIC iterations. For fixed point arithmetic area and latency of the proposed implementation is 

compared with standard CORDIC [7]-[8]. The two area - time efficient CORDIC architectures have been 

suggested in [9]. In [11] the Coordinate Rotation Digital Computer (CORDIC)  rotator is a well known and 

widely used algorithm within computers due to its way of carrying out some calculations such as trigonometric 

functions, many others. The new architecture which are able to reach a 35% lower latency and a 36% reduction 

in area and power consumption compared to the original scaling free architectures. 

 

II.  Brief Overview Of Cordic Algorithm 
 To evaluate trigonometric functions we have many approaches such as 1) Polynomial 

Approximations 

                                   2) Table lookup  

                                   3) CORDIC 

  

1) Taylor Series 

 

The Taylor series expansion for sine is: 
 

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ 

 

 This method is one of the oldest and most widely, but the problem associated with this method is, to 
get values of higher accuracies, higher order factorial and power has to be calculated. Moreover to implement 

this we would at least require a multiplier, divider, adder and a subtractor. For good accuracy it would be 
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required to take each term in calculation till they become insignificant. Thus this approach has a lot of hardware 

requirements as well as it is slow. 

 

2) Look up Table 

 The Lookup table approach involves storing values of sine and cosine at different angles. Based on 

the number of values stored, the lookup table can be big or small, but clearly, the smaller the lookup table, more 

is the error involved. The problem with a bigger lookup table is that it requires more memory and memory is 

expensive. Moreover the size of the Lookup table increases exponentially with the increase in the precision of 

the angle. Though this approach provides fast results it is very expensive to implement. 

 

3) Cordic  Algorithm 

 CORDIC is an acronym for Coordinate Rotation Digital Computer introduced by Jack E. Volder. It is 

an iterative algorithm capable of calculating trigonometric and various other functions. In this algorithm with 

the help of an adder/subtractor, a small look up table and a shifter the trigonometric functions can be calculated 
very easily. The advantage that Cordic offers over other algorithms are that it does not require multiplication or 

division blocks, instead it works only with a shifter, adder/subtractor and a small lookup table. This reduces the 

hardware requirement drastically and provides reasonably good speed. 

 Many variations have been suggested for efficient implementation of CORDIC with less number of 

iterations over the conventional CORDIC algorithm [4]–[11]. The number of CORDIC iterations are optimized 

in [4]–[6] by greedy search at the cost of additional area and time for the implementation of variable scale-

factor. In [7] and [8] efficient scale-factor compensation techniques are proposed, which adversely affect the 

latency/throughput of computation. Two area-time efficient CORDIC architectures have been suggested in [9], 

which involve constant scale-factor multiplication for adequate range of convergence (RoC). The virtually 

scale-free CORDIC in [10] also requires multiplication by constant scale-factor and relatively more area to 

achieve respectable RoC. The enhanced scale-free CORDIC in [11] combines few conventional CORDIC 

iterations with scaling-free CORDIC iterations for an efficient pipelined CORDIC implementation with 
improved RoC. However, if used for recursive CORDIC architecture, combining two different types of 

CORDIC iterations, degrades performance. 

 The low complexity technique for eliminating the scale factor is the use of Taylor series expansion. 

The Scaling-Free CORDIC and modified scale-free CORDIC are techniques based on Taylor series approach. 

 The former suffers from low range of convergence (RoC) which renders it unsuitable for practical 

applications, while the latter extends the RoC but introduces predictable but constant scale-factor of 1/ 2. The 

other hardware efficient architectures require scale-factor compensations to extend the range of convergence to 

the entire coordinate space. 

 

Sequential/Iterative CORDIC 

 It requires Maximum number of Clock Cycles to calculate output, Minimum Clock Period per 
iteration, Variable Shifters do not map well on certain FPGA’s due to high Fan-in. 

 

 
Fig:1. Variable Shifters 
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Parallel/Cascaded CORDIC: 

 It has Combinational circuit More Delay, but processing time is reduced as compared to iterative 

circuit. Shifters are of fixed shift, so they can be implemented in the wiring. Constants can be hardwired instead 
of requiring storage space. 

 
Fig.2. Parallel/Cascaded CORDIC 

 

 The key concept of CORDIC arithmetic is based on the simple and ancient principles of two-

dimensional geometry. But the iterative formulation of a computational algorithm for its implementation was 

first described in 1959 by Jack E. Volder for the computation of trigonometric functions, multiplication and 

division. This year therefore marks the completion of 50 years of the CORDIC algorithm. Not only a wide 

variety of applications of CORDIC have emerged in the last 50 years, but also a lot of progress has been made 

in the area of algorithm design and development of architectures for high performance and low-cost hardware 
solutions of those applications. CORDIC-based computing received increased attention in 1971, by varying a 

few simple parameters; it could be used as a single algorithm for unified implementation of a wide range of 

elementary transcendental functions involving logarithms, exponentials, and square roots along with those 

suggested by Volder. During the same time, Cochran benchmarked various algorithms, and showed that 

CORDIC technique is a better choice for scientific calculator applications. The popularity of CORDIC was very 

much enhanced thereafter primarily due to its potential for efficient and low-cost implementation of a large class 

of applications which include: the generation of trigonometric, logarithmic and transcendental elementary 

functions; complex number multiplication, eigen value computation, matrix inversion, solution of linear systems 

and singular value decomposition (SVD) for signal processing, image processing, and general scientific 

computation. 

 The name CORDIC stands for Coordinate Rotation Digital Computer. Volder [Vold59] developed 

the underlying method of computing the rotation of a vector in a Cartesian coordinate system and evaluating the 
length and angle of a vector. The CORDIC method was later expanded for multiplication, division, logarithm, 

exponential and hyperbolic functions.  

 

III.  Pipelined Architecture 

 The principle of pipelining has emerged as a major architectural attribute of most present computer 

systems .Pipelining is one form of imbedding parallelism or concurrency in a computer system. It refers to a 

segmentation of a computational process (say, an instruction) into several sub processes which are executed by 

dedicated autonomous units (facilities, pipelining segments) 
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Fig.3.Pipe line architecture logical view 

 

          Parallel CORDIC can be pipelined by inserting registers between the adders stages. In most FPGA 

architectures there are already registers present in each logic cell, so pipeline registers has no hardware cost. 

Number of stages after which pipeline register is inserted can be modeled, considering clock frequency of 

system. When operating at greater clock period power consumption in later stages reduces due to lesser 

switching activity in each clock period.1 

 

IV.  Proposed Algorithm For Scaling Free Cordic 
 The proposed design is based on the following key ideas: 1) we use Taylor series expansion of sine 

and cosine functions to avoid scaling operation and 2) suggest a generalized sequence of micro-rotation to have 

adequate range of convergence (RoC) based on the chosen order of approximation  of   the Taylor series. 

A. Taylor Series Approximation of Sine and Cosine Functions        

The Taylor expansions of sine and cosine of an angle “-” are given by  
 

sin ∝=  ∝ −  3! −1 ∝3+  5! −1 ∝5− ⋯ 

cos ∝ = 1 −  2! −1 ∝2+  4! −1 ∝4−⋯  
 

 We have estimated the maximum error in the evaluation of  sine and cosine functions for different 

order of approximations. Therefore, we choose third order of approximation for Taylor’s expansion of sine and 

cosine functions. 

 

1) Representation of Micro-Rotations Using Taylor Series Approximation:  
 Here, we study the impact of orders of approximation of Taylor series of sine and cosine functions on 

the micro-rotations to be used in CORDIC coordinate calculation. Both theoretical and simulation results are 

discussed to confirm the appropriate selection of the order of approximation. Using different orders of 

approximation of sine and cosine functions in (2), we can have 
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 We have used (1) for coordinate calculation for evaluating the best possible combination of 

approximation, which satisfies the accuracy and RoC requirements, with minimum possible hardware. In Fig. 1, 

we have plotted the error in magnitude estimated according to (1) (with respect to the corresponding built-in 

functions of MATLAB). Since Errors resulting from the five combinations (1a)–(1e) are of very small order, we 

prefer to use (1a) for coordinate calculation with minimum complexity. 

 

2) Expressions for Micro-Rotations Using Taylor Series Approximation and Factorial 

Approximation: 

 Although, we find that we can use Taylor series expansion with third order of approximation 

(1a),with desired accuracy and RoC requirement, (1a)cannot be used in the CORDIC shift-add iterations. To 

implement (1a) by shift-add operations, we need to approximate the factorial terms by the power of 2values, 

replacing 3! by 2^3 in the (1a) we find 

 

 
𝑥𝑖+1

𝑦𝑖+1
 =  

 1 −  2! −1 . ∝𝑖
2 −(∝𝑖− 2−3 ∝𝑖

3)

(∝𝑖− 2−3 ∝𝑖
3) (1 −  2! −1 . ∝𝑖

2)
 .  

𝑥𝑖

𝑦𝑖
      (2)     

   

 In Fig. 1 only, we have plotted the error in magnitude using the approximated factorial values and 

exact factorial values after a CORDIC rotation for initial vector with coordinates X=1 and Y=1. The maximum 

percentage of error in sine and cosine values for both third order of approximation and factorial approximation 

is 0.0004% and 0.0168%, respectively, within the permissible CORDIC elementary angles range of  0,
7𝜋

88
  

discussed. 

 

3) Determination of the Basic-Shift for a Given Order of Approximation of Taylor Series Expansion: 

 One can find that: 1) the order of approximation of Taylor series expansion of sine and cosine 

functions determines the basic-shift to be used for CORDIC iterations, and 2) the basic-shift of CORDIC micro 

operation determines the range of convergence. The expressions for the basic-shifts, the first elementary angle 

of rotation  ∝1  and RoCfor different orders of approximations for different word-length of implementations are 
as follows: 

Basic shift     S= 
𝑏−log 2 𝑛+1 !

(𝑛+1)
            (3a)  

Where b is the word length 

ROC=𝑛1 . ∝1                              (3b) 

N is number of micro rotations 

∝1= 2−𝑠                              (3c) 

 

 The values in Table I are derived from (3). We find with increase in the order of approximation, the 

basic-shift decreases, the first elementary angle of rotation increases and RoC is expanded. Very often inclusion 
of higher order terms does not have any impact on the accuracy for smaller word-lengths. The basic-shift for 

third order of approximation using (3a), for 16-bit word-length is [2.854]. 
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TABLE I 

COMPARISION OF APPROXIMATION ORDERS VERSUS ROC FOR VARIOUS BIT WIDTHS BASED 

ON(7) 
Order of 

Approx. 

Basic shift First Elementary Angle 

(Radians) 
RoC for 𝑛1=4 

(Radians) 

16-bit 32-bit 16-bit 32-bit 16-bit 32-bit 

3 2 6 0.25 0.01562 1 0.0625 

4 1 5 0.5 0.03125 2 0.125 

5 1 3 0.5 0.125 2 0.5 

 

TABLE II BIT REPRESENTATION OF ELEMENTARY ANGLES AND CORRESPONDING SHIFTS 

Shift 
(si) 

Elementary angle(𝛼𝑖) 

Decimal 16-bit Hexa 
Decimal 

2 0.25 4000 

3 0.125 2000 

4 0.0625 1000 

5 0.03125 0800 

 

 In this paper, we propose a novel scaling-free CORDIC algorithm for area-time efficient 

implementation of CORDIC with adequate RoC. The proposed recursive architecture has comparable or less 

area complexity with other existing scaling-free CORDIC algorithms. Moreover, no scale-factor multiplications 

are required for extending the RoC to entire coordinate Space. 

 

Pseudo Code For Generating The Micro-Rotation Sequence 

Input: angle to be rotated 𝜃𝑖 

Begin 

M=Most significant-1location (𝜃𝑖) 

If (M==15) then 

α=0.25 radians 

Shift,𝑠𝑖 = 2 𝑎𝑛𝑑 𝜃𝑖+1 = 𝜃𝑖 − 𝛼 

else 

shift,𝑠𝑖=16-M 

𝜃𝑖+1 = 𝜃𝑖 With 𝜃𝑖[M]=’0’ 

END 

 

V.   Proposed Cordic Architecture 

 The block diagram for the proposed CORDIC architecture is shown in Fig. below. It makes use of the 

same stage for all the iterations for the coordinate calculations, as well as for the generation of shift values. The 

structure of each stage (shown in Fig. 5) consists of three computing blocks namely the 1) shift-value 

estimation; 2) coordinate calculation and 3) micro-rotation sequence generator. 
 

 
Fig.4. Recursive architecture of the proposed CORDIC processor. 
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Fig. 5. Block diagram for the stage. 

 

 The combinatorial circuit for generating the micro-rotation sequence is shown in Fig. 4. The number 

of iterations required in a CORDIC processor decides the rollover count of the counter. The rollover count is 

seven for basic shift =2  and ten for basic-shift =3. 

 

 
Fig. 6. Combinatorial circuit for generating the shift values. 

 

 The expiry of the counter signals the completion of a CORDIC operation; depending on this signal, 

the multiplexer either loads a new data-set (rotation angle, initial value of and “x”and”y”) to start a fresh 
CORDIC operation, or recycles the output of the stage to begin a new iteration for the current CORDIC 

operation. The input and output register files act as latches for synchronization. 

 

 
Fig 7.  Micro-rotation sequence generation. 

 

VI.  Fpga Implementation 
 The proposed architecture is coded in Verilog and synthesized using Xilinx ISE9.2i to be 

implemented in Xilinx Spartan 2E (XC2S200EPQ208- 6) device. Slice-delay-product of the proposed 

architecture is compared with the existing CORDIC designs in Table III; where, all designs are synthesized on 
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Xilinx Spartan 2E XC2S200E device to maintain uniformity. The power dissipation of the proposed architecture 

for different clock frequencies is estimated by Xilinx XPower tool. 

 

VII.  Experimental Result And Discussion 
TABLE III SLICE DELAY PRODUCT 

      

 

 

 

 

 

 Slice-delay-product of the proposed architecture is compared with the existing CORDIC designs in 
Table III is suggested to reduce the number of iterations for low latency implementation. The proposed 

CORDIC processor has 17%  lower slice-delay product for identifying the micro-rotations. 

 

VIII.  Conclusion 
 The proposed algorithm provides a scale-free solution for realizing vector-rotations using CORDIC. 

The order of Taylor series approximation is decided appropriately by the proposed algorithm, not only to meet 

the accuracy requirement but also to attain adequate range of convergence. The generalized micro-rotation 

selection technique is suggested to reduce the number of iterations for low latency implementation. Moreover, a 

high speed most-significant-1 detection scheme obviates the complex search algorithms for identifying the 
micro-rotations. The proposed CORDIC processor has 17% lower slice-delay product with a penalty of about 

13% increased slice consumption on Xilinx Spartan 2E device 
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Logic Utilization Used Available Utilization 

Number of Slices 958 5472 17% 

Number of Slice Flip Flops 862 10944 7% 

Number of 4 input LUTs 1749 10944 15% 

Number of bonded IOBs 57 240 23% 

Number of GCLKs 1 32 3% 
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