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Abstract: Sum patterns find applications in Radar for searching and ranging of the targets. A sum pattern with 

low sidelobe level is a desirable feature in these applications, in order to reduce EMI problems. Sum patterns 

with Asymmetrical sidelobe topography are considered, in applications where only certain angular regions of 

pattern are required to have low sidelobe level. Asymmetrical pattern characteristics can have lower beam 

widths for given design specifications as compared to symmetrical patterns. In view of this, a conventional 

method of synthesis is carried out in this paper, to produce asymmetrical sidelobe level patterns using discrete 

arrays. The effect of beam scanning on the pattern behavior is also analyzed for the above synthesized patterns.  

Keywords: sum pattern, asymmetrical sidelobe level, beam width, complex excitation weights, and discrete 
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I. Introduction 
 A common pattern requirement is high directivity and low sidelobe level for Radar, communication 

and mapping applications. The main beam may be fixed at broad side or at some angle. Usually the radiation 

pattern of a single element is relatively wide and provides a very low value of directivity. In many applications 

it is necessary to design antennas with very directive characteristics to meet the demands of long distance 

communication. This can only be accomplished by increasing the electrical size of the antenna. Enlarging the 

dimensions of single element leads to more directive characteristics, which sometimes increases the system 

complexity. Another way to increase the directivity without necessarily increasing the size of the element is to 

form an assembly of radiating elements in electrical and geometrical configuration [1]. 

 There are at least five controls that can be used to control the overall pattern of the antenna. They are 
number of elements in the array, the geometrical configuration of the overall array, the excitation of the 

individual elements, relative displacement and the radiation patterns of the individual elements. A linear array 

consists of equally spaced elemental radiators [2], laid out in a straight line, the sum pattern is characterized by a 

single narrow main lobe and a set of side lobes. For most of the applications the sum pattern should possess 

narrow mainlobe and very low sidelobes.    

 In Radar and Communication applications, sum patterns with low side lobe levels are useful in order to 

have low beam widths. In some radar applications sum patterns with asymmetrical side lobes provide a system 

advantage [2]. The sum patterns with arbitrary side lobe topology are useful in applications where undesired 

signals are coming from a limited region of space, permitting the sidelobes to be higher elsewhere, results in a 

narrow main beam and more directivity from the same aperture [3]. Frequently antennas operate in an 

environment with several targets or interfering objects present. This may lead to ambiguous or false system 
response. A rather substantial error in the system response may be due to the contributions from the pattern 

sidelobes. Therefore it is desirable to keep the sidelobe level as low as possible. There exist several methods for 

designing line sources and uniformly spaced arrays which have lower sidelobe and narrow beam widths. 

 However there is only specific angular region over which the antenna response must be very low. 

Reduction of all sidelobes to some very low level is possible in theory, but leads to wider main beam width and 

may be difficult to realize in practice. It is therefore important to be able to synthesize patterns with very low 

side lobes over one or more specified sectors of the pattern. Hyneman prescribed one method for achieving 

control over the near in sidelobe envelope function for line sources. 

 Sum patterns can be generated with standard distributions and designed distributions. Instead of equal 

currents and equal phases, symmetrical taper distributions can be utilized, but the tapered distribution suffers the 

penalty of some increase in beam width to the first null. However, this sacrifice is benefited by a compensatory 

advantage of secondary minimum or first sidelobe lower than it was in the case of the uniform current 
distribution. The important conclusion is that the SLL can be controlled by tapering the array excitations, at 

some cost in beamwidth. The angular excitation of the main beam in a sum pattern is inversely related to the 

length of the array and for a given array length the main beam broadens as the sidelobe level is lowered. The 
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design specifications of synthesis problem include desired width of the sum pattern as well as the sidelobe level. 

 The designer determines the requisite current distribution, array length and the spacing of the elements 

Design techniques for synthesis of line source aperture distribution that yield antenna radiation pattern with 
narrow main beam and symmetrical low sodelobes have been highlighted by the work of Dolph and Taylor. 

 Dolph utilized the feature that Chebyshev functions consists of a number of unitary oscillations, 

followed by a hyperbolic rise, in designing linear arrays that would produce antenna patterns replicating the 

Chebyshev characteristics. He has shown that for discrete array of linear radiators, spaced a half wave length 

apart, an optimality condition exists in that Dolph pattern provide a minimum beam width for given sidelobe 

level. Taylor demonstrated that the continuum limit of the Dolph aperture distribution is physically un 

realizable, but can be approximated quite satisfactorily by a distribution that corresponds to a radiation pattern 

with a narrow main beam and symmetric sidelobes, a specified number of these sidelobes on each side of the 

main beam (extending to the limit of the visible region, if desired) can be designed to be at essentially the same 

level, with the farther out sidelobes decaying in height. The Taylor pattern is representable as a canonical 

product of factors whose roots are the zeros of the pattern, however both Dolph and Chebychev distribution 
provide patterns with symmetric sidelobes, and in some applications this is neither a requirement nor even 

desirable. Typical of such applications is the situation in which the main beam to point to prescribed degrees 

above the horizon and the sidelobes between the horizon and main beam are to be suppressed to lower levels to 

minimize ground clutter. 

 If a Dolph or taylor is employed, the sidelobes between the main beam and zenith will also be 

suppressed to the same level. However it might be that, in a case where the upper region of sidelobes need not 

be suppressed that deeply, if the sidelobes are not suppressed that much, there would be a narrowing of the main 

beam and an increase in gain relative to the symmetric case with suppressed all sidelobes to the same level.  It is 

this feature that makes the idea of a pattern with asymmetric sidelobes appealing in such situations. Some of the 

system applications also require imbalances in sidelobes, like marine radar applications. A simple modification 

of the Taylor distribution has been found to give designer control over the asymmetric levels of the sidelobes on 

the two sides of the main beam. 
 

II. Formulation 
 The continuous line source being represented by magnetic currents, the element factors and a common 

array factor, being an integral form by considering the general array factor  
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 A  is a measure of the side lobe level (SLL) in that cosh πA = b, with 20 log, ,b = SLL. 

With a Taylor pattern defined by [2] and [3], it becomes a simple matter to find the corresponding aperture 

distribution from [1]. 

Let  
xjexhxg  )()(

  
be the excitation function, with )(xh represented by the Fourier series 
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However, [1] indicates that 0)( m  for nm  , so the Fourier series truncates, and thus the 

continuous aperture distribution is given by 

 









 





 1

1

cos)(2)0(
2

)(
n

m

xj

a
xmm

a

e
xg 



         [5] 

 

Modified Taylor Patterns 
 Optimum designs of sum patterns often call for the maximum directivity (minimum beam width) from 

a line source of specified length, subject to some specification on the side lobe level. However, all directions in 

space may not be equally important, so far as side lobe suppression is concerned. Since every side lobe that is 

suppressed costs something in beam broadening, Taylor patterns (which arise when equal importance is attached 

to all directions) may not be optimum in some applications one is led to consider designs which permit high side 
lobes in unimportant regions, while maintaining low side lobes in critical regions, that is, patterns with arbitrary 

side lobe topography. 

 A perturbation procedure may be used to modify a Taylor pattern so that all the side lobes have 

individually arbitrary heights. To begin with, expressing the Taylor pattern of [1] in the more general form 
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 The subscripts R and L in [5] are used to identify the right side and the left side of the pattern. As 

generalized, the root positions are given by 
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 In (6) through (8), Ln and Rn , are positive integers that denote the transition roots on the two sides of 

the main beam. The side lobe level parameters on the two sides of the pattern are, 
L

A and
R

A . The prime on 

each product sign in (6) indicates that the factor for which n = 0 has been excluded. Specifically, this pattern has 

the advantage that the beam width is narrower and the directivity is higher than one finds in a symmetrical 

Taylor. The aperture distributions corresponding to these modified Taylor patterns can be expressed in the 

Fourier form. 
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 The above equation gives the excitation function for continuous line source antenna. Magnitude and 

phase of the above equation are used as excitation amplitude and phase functions to get the asymmetrical 

sidelobe level patterns. The excitation weights for discrete array are obtained by taking samples at the element 

positions of continuous excitation functions [5]. For discrete array the pattern function is given by the following 

equation. 
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III. RESULTS 

 

 

 The figures 1 to 8 indicate the asymmetrical sidelobe patterns and their excitation amplitude and phase 

functions. The results were presented for an array length of 14 and 12. The sidelobe level of 15/45 dB, are 

considered for Ln =  4  , Rn =  6. The second set of parameters considered are SLL=35/15 dB, Ln
 
=6

  
, Rn =8. 

Tables-1 gives the synthesized root values for SLL=15/45 dB and Table-2 indicates the excitation weights for 

SLL=35/15 dB, N=24.  

 

 

 

 

 
Table -1 Root values for SLL=15/45 dB 

S.No 1 2 3 4 5 6 7 8 9 

n -3 -2 -1 0 1 2 3 4 5 

Root 

value 
-0.01411 0.025366 0.00916 1.04 0.323701 -5.7E-05 0.004154 -0.0019 0.000634 
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Table -2 Excitation weights for SLL=35/15 dB, N=24 
S. No Element position 

  

 

Amplitude Phase in Degrees 

1 -0.95833 0.392641 -17.1171 

2 -0.875 0.409644 -41.2624 

3 -0.79167 0.424224 -46.1559 

4 -0.70833 0.487753 -40.1399 

5 -0.625 0.586954 -35.6356 

6 -0.54167 0.673079 -31.9028 

7 -0.45833 0.754014 -27.1031 

8 -0.375 0.83343 -22.423 

9 -0.29167 0.896392 -17.7307 

10 -0.20833 0.946465 -12.6159 

11 -0.125 0.983803 -7.62258 

12 -0.04167 1 -2.61256 

13 0.041667 1 2.612562 

14 0.125 0.983803 7.622583 

15 0.208333 0.946465 12.61593 

16 0.291667 0.896392 17.73068 

17 0.375 0.83343 22.42299 

18 0.458333 0.754014 27.10311 

19 0.541667 0.673079 31.90283 

20 0.625 0.586954 35.63556 

21 0.708333 0.487753 40.13985 

22 0.791667 0.424224 46.15591 

23 0.875 0.409644 41.26238 

24 0.958333 0.392641 17.11709 
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IV. Conclusion 
 This paper discusses conventional method to synthesize asymmetrical sum patterns. Modified Taylor 

method of synthesis is used to obtain the desired patterns. The excitation phase and amplitude are calculated for 

continuous line source, and these excitations are sampled at the element positions of the discrete array provided 

the array length is large. Synthesized asymmetrical SLL ratio is differing from the desired SLL by ≤ 5dB level. 

The synthesized excitation amplitude is even symmetric about the origin and phase excitation is odd symmetric 

about the origin. This analytical method of synthesis requires more mathematical analysis, sometimes it can be 

solved by optimization techniques. 
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