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I. Introduction 

Let us consider the set of positive real numbers, not equal to 1 and denote this by 
   defined as 

 1,0:  RRR  . Let n with 2n   is the set of all probability distributions 
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[1] studied R-norm information of the distribution P defined for 
R by: 
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The R-norm information measure (1) is a real function 
n defined on n ,where 2n  and 

R is the 

set of real positive numbers. The measure (1) is different from entropies of [2], [3], [4] and [5]. The main 

property of this measure is that when 1R   (1) approaches to Shannon’s entropy and 

when R ,   iR pPH max1 , where ni ,,2,1  . 

The measure (1) can be generalized in so many ways. [6] Proposed and characterized the following parametric 

generalization of (1.1): 
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The above measure (2) was called generalized R-norm information measure of degree β and it reduces to (1) 

when β=1. 

Further when R=1 (2) reduces to:  
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In case 






2

1
 reduces to: 

  1
2

1
,1

1

1

1






























 






 


n

i

ipPH                                                                                              (4) 

This is an information measure which has been given by [7].  It can be seen that (4) also reduces to Shannon’s 

entropy when 1 . 

[8] Proposed and studied the following parametric generalization of (1): 
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They called (5) as the generalized R-norm information measure of type  and degree . (5) reduces to (2) 

when 1  and it further reduces to (1) when 1 .Recently, [9] have applied (5) in studying the bounds of 

generalized mean code length.                                                                       

In order to distinguish the events 
nEEE ,,, 21   with respect to a given qualitative characteristic of physical 

system taken into account, we ascribe to each event 
iE  a non- negative number    0 ii uEu  directly 

proportional to its importance. We call iu , the utility or importance of event 
iE  where probability of occurrence 

is ip .In general iu  is independent of ip (see [10]). 

 [11] characterized a quantitative-qualitative measure which was called ‘useful’ information by [10] of the 

experiment E and is given as: 

   nn uuupppHUPH ,,,;,,,; 2121                                 

  1,10,0,log iiiiii ppuppu                                                                              (6)    

Later on [12] characterized the following measure of ‘useful’ information: 
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Analogous to (1) we consider a measure of ‘useful’ R-norm information as given below: 
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where  nuuuU ,, 21  is the utility distribution and 0iu  is the utility of an event with probability ip . 

It may be noted that if  1R , then (8) reduces to (7). Further let n

 be a set of utility distributions 

s.t.
nU   is utility distribution corresponding to 

nP  . 

               In the present paper we characterize the ‘useful’ R-norm information measure (8) axiomatically in 

section 2. In section 3 we study the properties of the new measure of ‘useful’ R-norm information measure. 

 

II. Axiomatic Characterization 

             Let
n n nS R     , ,3,2n  and

nG be a sequence of functions of spi

'
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'
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nS satisfying the following axioms: 
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This axiom is also called sum property. 

Axiom 2.2.  For  , , , andn n m mP U P U       ,
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Axiom 2.3.  uph ,  is a continuous function of its arguments  p and u. 
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where ,,3,2 n  and   10 R  

First of all we prove the following three lemmas to facilitate to prove the main theorem: 
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Lemma 2.1. From axiom 2.1 and 2.2, it is very easy to arrive at the following functional equation: 
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where     Jupup jjii  ,,,   for ni ,,2,1    and  .,,2,1 mj   

Lemma 2.2. The continuous solution that satisfies (9) is the continuous solution of the functional equation: 
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Proof: Let dcba ,,,  and dcba  ,,,  be positive integers such that  

ccbbaa  1,1,1 ,   and dd 1 . 
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From equation (9) we have: 
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Taking 1 dcba in (11), we get:  
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Taking 1 ca  in (11) and using (12), we have:  
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Again taking 1 db  in (11) and using (12), we get: 
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Now (11) together with (12), (13) and (13) reduces to:  
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Next we obtain the general solution of (10). 

Lemma2.3. One of the general continuous solution of equation (10) is given by: 
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The most general continuous solution of (18) (refer to [13]) is given by: 
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Hence this completes the proof of theorem 2.1. 

Particular cases:  

(a) When utilities are ignored i.e. 1iu  for each i, (8) reduces to (1). 

(b) Further 1R , (1) reduces to Shannon’s entropy [13]. 

 

III. Properties of ‘useful’ R-norm Information Measure 
The ‘useful’ R-norm information measure  UPH R ;  satisfies the following properties: 
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Property 3.3. Addition of two events whose probability of occurrence is zero or utility is zero has no effect on 
useful information, i.e. 
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Similarly we can prove that  
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Property 3.4.  UPH R ;  satisfies the non-additivity of the following form: 

         VQHUPH
R

R
VQHUPHVUQPH RRRRR ;;

1
;;;


                                        

where  mnnmm qpqpqpqpqpqpQP ,,,,,,,, 1212111  , and 

 mnnmm vuvuvuvuvuvuVU ,,,,,,,, 1212111   

Proof:   R.H.S=        VQHUPH
R

R
VQHUPH RRRR ;;

1
;;


  


















































































































































R

jj

R

jj

R

ii

R

ii

R

jj

R

jj

R

ii

R

ii

qv

qv

pu

pu

R

R

qv

qv

R

R

pu

pu

R

R
1111

11
1

1
1

1
1































































































































R

jj

R

jj

R

iI

R

ii

R

jj

R

jj

R

iI

R

ii

R

jj

R

jj

R

i

R

ii

vq

vq

pu

pu

vq

vq

pu

pu

qv

qv

pu

pu

R

R
111111

111
1























































R

jj

R

jj

R

iI

R

ii

vq

vq

pu

pu

R

R
11

1
1

 
1

1 1

1 1

1
1

n m R
R

i j i j

i j

n m

i j i j

i j

u v p q
R

R
u v p q

 

 

  
  
     
  
   

 

 

 

 VUQPHR  ;  = L.H.S. 

 

Property 3.5. Let 
ji AA ,  be two events having probabilities ip , jp and utilities  ji uu ,, respectively, then we 

define the utility u  of the compound event 
ji AA   as: 
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Theorem 3.1 Under the composition law (23), the following holds: 
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    This completes the proof of theorem 3.1. 

 

IV. Conclusion 
R- norm information measure is defined and characterized when the probability distribution P belong 

to R- norm vector space. This is a new addition to the family of generalized information measures.  

           In present paper we have considered that physical system has qualitative characterization in addition to 

quantitative and have defined and characterized a new measure R-norm information measure . This measure can 

further be generalized in many ways and can be applied in source coding when source symbols have utility also 

in addition to probability of occurrence.   
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