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Abstract: We present a new image smoothing method by eliminating a manageable degree of low-amplitude 

structures while sharpening major edges by increasing the steepness of transition of edges. The use of low 

gradient minimization globally controls how many non-zero gradients are resulted in to approximate prominent 

structure in a sparsity control manner. Our method doesn’t depend on local features like other edge-preserving 
methods. 
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I. Introduction 
Images comprise well-structured and rich visual information. Edges are effective and expressive 

stimulation for neural interpretation of human visualization to make best sense of scene. Research follows on 

manipulating and understanding pictures, high-level inference with regard to salient structures and usefulness in 

a wide range of applications, including image recognition, segmentation, object classification, and many other 

photo editing and non-photorealistic rendering tasks. 
A new editing method is presented which greatly helpful for enhancing image salient edges while 

diminishing insignificant details. It enables faithful principal structure representation by globally maintaining 

and possibly enhancing the most prominent set of edges by increasing steepness of transition by preserving the 

overall acutance. 

Edge-preserving smoothing algorithms [1], [2], [3], [4], [5] that aim to retain primary color change but our 

algorithm differs from these in essence in focuses on sparse gradient Counting scheme. The main focus of 

algorithm is to confine the discrete number of intensity changes among neighbouring pixels, which links 

mathematically to the L0 norm for information sparsity pursuit. This idea also leads to an unconventional global 

optimization procedure involving a discrete metric, whose solution enables diversified edge manipulation 

according to saliency. Our method easily detects thin salient edges and more visually distinct. 

 

II. Background Work 
Local filtering algorithms like bilateral filters [1] and its accelerated versions [6], [7], [8] do edge-preserving 

smoothing. Edge preserving algorithms are also presented based on weighted least square optimization [9] and 

envelope extraction [10]. 

Due to simplicity and effectiveness of Bilateral filtering, it is widely used in removing noise-like 

structures. Trade off between flattening details and sharp edge preservation is provided by this method [9]. 

Anisotropic diffusion11 focuses on suppressing noise while preserving important structures, which involves an 

edge-stopping function to prevent smoothing from crossing strong edges in the image. The change of structures 

put together in a specific place and the output would converge to a constant-value image unless being stopped 

halfway.  
Weighted least square (WLS) [9], edge preserving regularization is more flexible with local filtering. Another 

edge preserving method, Total variation (TV) [12] widely used to suppress noise. It influence contrast during 

smoothing process due to large gradient amplitude penalty. The best ways for image preservation by local signal 

extremes and used edge-aware interpolation to compute envelopes [10]. By using 1D Hilbert-Huang transform 

(HHT).a smoothed mean layer is extracted by averaging the envelopes. It aims to remove small scale 

oscillations. 
Our idea targets globally preserving salient structures, even if they are small in resolution of concentration. One 

of the histogram smoothing process, to accelerate local filtering and proposed the mode-based filters [5]. Most 

recently, one of the image preserving method was demonstrated that multi-scale detail manipulation can be 

achieved using a modified Laplacian pyramid with coefficient classification13. Our method quite differs from 

above methods in overall estimation process. We emphasis our method as complementary to prior smoothing 

approaches.  

Finally, interactive image editing methods, Graph-cut based methods [14], [15], [16] and segmentation methods [17], 

[18] 
needs to select regions of interest in image with accurate boundaries levels. User interactions can be 

performed more efficient manner on our edge-enhanced images after removing low-amplitude structures. 
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L0 norm in sparse coding was proposed [20] to extract sparse descriptors from natural images. Continuous Lp 

norm with p = 1 was enforced in total variation (TV) smoothing to suppress noise which penalize the 

magnitudes of salient edges. Lp norm regularization with 0.5 ≤ p ≤ 1 was also employed [21] to model the sparsity 
of natural image gradients. A selective penalizing image gradient [22] is related to the Weak Membrane model, 

which explicitly represents discontinuity and adjusts gradients only in continuous regions.  

 

III.  Smoothing 
3.1 D Smoothing 

Enhancement of highest-contrast edges is done by confining the number of nonzero gradients, and 
smoothing is achieved in a global manner.  

We denote the input discrete signal by g and its smoothed result by f . Our method counts changes in 

amplitude discretely, written as: 

)1(}0{)( 1  pp ffpfc  

Where p and p+1 are index neighbouring pixels. Gradient with respect to p in forward difference is |fp−fp+1|. The 

counting operator #{ } counts the no of pixels that satisfies | fp−fp+1|≠0. that is, the L0 norm of gradient. c( f ) 

counts the no of pixels not the gradient magnitude.  

Our method uses this with constraint stating that the result f should be structurally similar to the input signal g. 

We express the specific objective function as: 

)2()(..)(min 2  kfctsgf
p

pp
f

 

k non-zero gradients exists in the result if c(f)=k. Structural information can be abstracted from eq(2). A larger k 

yields a finer approximation, still characterizing the most prominent contrast.     

 In Equation (2), the quadratic intensity difference term (fp −gp)
2, That many pixels drastically change their 

colour. So low-amplitude structures can be primarily removed. Salient edges are automatically prevented from 

diminishing. The feature of this work is that no edge blurriness will be caused if filtering is avoided also with 

any value of k. 

For 2D images with different resolutions k value in Equation (2) may range from tens to thousands, 
especially in 2D images with different resolutions. To balance between structure flattening and result with same 

input, a general form is employed, and writes it as:  

)3()(.)(min 2 
p

pp
f

fcgf   

Where λ is a weight directly controlling the significance of c( f ), which is nothing but smoothing parameter. 

Larger λ value results in fewer edges in result. The number of non-zero gradients is monotone with respect to 

1/λ. 

 

3. 2 D Smoothing & Formulation 
In 2D image representation, I denotes the input image and S denotes the computed result. The color 

difference between neighbouring pixels along the x and y directions is calculated for each pixel as gradient ∇Sp = 

(∂xSp, ∂ySp)
T .  

Gradient measure is expressed as: 

(4)--- 0}  |S|+|S| {p# = C(S) pypx   

C(S) counts p whose magnitude |∂xSp|+|∂ySp| is not zero.  

S can be estimated by solving 

)5()(.)(min 2 



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



p

pp
S

SCIS   

For color images, the gradient magnitude |∂Sp| is defined as the sum of gradient magnitudes in red, green, blue. 

Equation (5) solution is difficult because the two terms model respectively the pixel-wise difference and global 

discontinuity statistically. An optimization strategy with half quadratic splitting is adopted to solve Equation (5).  

The idea of introducing auxiliary variables to expand the original terms and update them iteratively is used in 

half quadratic splitting. Splitting scheme 19 used to solve a different convex problem. Due to the discrete nature 

of Equation (5), solution contains new sub problems. The solution is an approximation, which makes the 

problem easier to tackle and upholding the property to maintain and enhance salient structures.  

An auxiliary variables hp and vp, are introduced corresponding to ∂xSp and ∂ySp respectively, and rewrite 

the objective function as: 
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Where C(h, v) = #{p|hp|+|vp|≠ 0} and β is an automatically adapting parameter to control the similarity between 

variables (h,v) and their corresponding gradients.  

Equation (6) approaches Equation (5) when β is large enough. Equation (6) is solved through alternatively 

minimizing (h,v) and S. In each pass, one set of the variables are fixed with values obtained from the previous 

iteration. 

 

3.2.1 Computing S  

Minimizing Equation (7) by omitting the terms not involving S in Equation (6) gives S estimation: 
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The function is quadratic and thus has a global minimum even by gradient decent. 

Derivative operators after Fast Fourier Transform (FFT), yields solution: 

)8(
))()()()(()1(

))()()()(()(

**

**

1 

















 

yyxx

yx vhI
S




 

Where   is the FFT operator and  ()∗ denotes the complex conjugate.  (1) is the Fourier Transform of the 

delta function. Computation in the Fourier domain is much faster than direct minimization of Equation (7) in the 

image space, which involves very-large-matrix inversion. 

3.2.2 Computing (h,v) 
The objective function for (h,v) is 
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Where C(h,v) returns the number of non-zero elements in |h|+|v|. The solution is easy because Equation (9) can 

be spatially decomposed where each element hp and vp can be estimated individually. 

 Eq. (9) is accordingly decomposed to 
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Where H(|hp|+|vp|) is a binary function returning 1 if |hp|+|vp|≠0 and 0 otherwise. Each single term with respect 

to pixel p in Eq. (10) is 
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Which reaches its minimum E*
p under the condition 
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3.2.3 Proof 

1) When    22
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, non-zero (hp, vp) yields: 
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Note that (hp,vp) = (0,0) leads to 
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The minimum energy is produced when (hp,vp) = (0,0). 

Minimum energy is given by: 

   22*

pypxp SSE   

 

2) When (∂xSp)
2 +(∂ySp)

2 >λ /β and (hp,vp) = (0,0), Eq. (14) still holds. But Ep((hp,vp) ≠ (0,0)) has its minimum 

value λ/β when (hp,vp) = (∂xSp,∂ySp). Comparing these two values, the minimum energy E*
p = λ/β is produced 

when (hp,vp) = (∂xSp,∂ySp).  

Compute the minimum energy Ep
* for each pixel p and Summing all of them, i.e.,Σp Ep

*, yields the global 

optimum for Equation (10). 

Algorithm 

  

Parameter β starts from a small value 

β0, it is multiplied by κ each time in 

iterations. β0 and βmax have fixed 

values 2λ and 1E5 respectively. κ that 

is set to 2 is a good balance between 

efficiency and performance. When κ 

set to 1.05, produces higher-quality 

results. The parameter λ is adjusted to 

control the level of structure 

coarseness.  

 

 

 

IV. Experiment Results 
We compare our smoothing method with Bilateral Filter to evaluate the performance. 

We use 2D example3 as input image as shown in Fig1.  By varying the λ value smoothing performance can be 

achieved more efficiently, the results are shown in Fig2 to Fig6. Fig7 shows the result of Bilateral Filter. 

 
Fig1. Input image        Fig2. With λ=0.01 

 
Fig3. With λ=0.05      Fig4. With λ=0.1 

 
Fig5. With λ=0.2      Fig6. With λ=2 

Input: Image I, Smoothing weight λ, parameters β0, βmax and rate k. 

Initialization: S      I, β β0, i 0  

Repeat 

With S(i), solve for hp(i) and vp(i) in eq (12). 

With h(i) and v(i), solve for S(i+1) with eq(8). 

 β k β, i++. 

Until  β≥ βmax 

Output: result image S. 
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Fig7. Result of bilateral filter 

Fig8 shows the input image. Fig9 shows the result of our method and Fig10 shows the result of Bilateral Filter. 

 

 

 
              Fig8. Input image                Fig9.with λ=0.015 

 
Fig10. Bilateral filter result 

 
V. Conclusion 

The proposed method smoothes the natural images based on removal of low-amplitude structures and 

preserval of salient edges. When our method combined with local filtering it produces very good results. 

Bilateral filtering blurs main boundaries under strong smoothing. First apply bilateral filtering followed by our 

method in order to achieve globally sharpen prominent edges. 
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