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Abstract: In Wireless Sensor Networks, mobile elements (MEs) as powered carriers to convey data has been 

shown to be an actualway of persisting sensor network life time and transmitting information in segregated 

networks. As the data generation amounts of sensors may vary, some sensors need to be visited more recurrently 

than others. In this paper, a partitioning-based algorithm is presented that schedules the activities of MEs in a 

sensor network such that there is no data loss due to buffer excess. Simulation results show that the proposed 

Partitioning-Based Scheduling (PBS) algorithm performs well in terms of dipping the minimum required ME 

speed to prevent data loss, providing high predictability in inter-visit durations, and minimizing the data loss 

rate for the cases when the ME is controlled to move slower than the minimum required ME speed. 
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I. Introduction 
A typical  Wireless  Sensor  Network (WSN) consists  of  spatially  distributed autonomous sensors to  

cooperatively  monitor physical  or  environmental  conditions,  such as temperature, sound,  vibration,  

pressure,  motion, at different  locations.  The development of WSNs was motivated by military applications. 

However, WSNs are now used in civilian applications, including environment, traffic and habitat monitoring, 

healthcare and home automation. The use of wireless sensor networks (WSNs) have been proposed for critical 

applications such as battlefield surveillance, habitat monitoring, traffic monitoring, and nuclear, chemical and 

biological attack detection. Habitat and environmental monitoring represent a class of sensor network 

applications with enormous potential benefits for scientific communities and society as a whole. Instrumenting 

natural spaces with numerous networked micro sensors can enable long-term data collection at scales and 

resolutions that are difficult, if not impossible, to obtain otherwise. The intimate connection with its immediate 

physical environment allows each sensor to provide localized measurements and detailed information that is 

hard to obtain through traditional instrumentation. The integration of local processing and storage allows sensor 

nodes to perform complex filtering and triggering functions, as well as to apply application-specific or sensor-

specific data compression algorithms. The ability to communicate not only allows information and control to be 

communicated across the network of nodes, but nodes to cooperate in performing more complex tasks, like 

statistical sampling, data aggregation, and system health and status monitoring. Increased power efficiency gives 

applications flexibility in resolving fundamental design tradeoffs,e.g. between sampling rates and battery 

lifetimes. Low-power radios with well-designed protocol stacks allow generalized communications among 

network nodes, rather than point-to-point telemetry. The computing and networking capabilities allow sensor 

networks to be reprogrammed or re-tasked after deployment in the field. 

 

1.1 RELATED WORK: 
The use of mobile essentials to harvest data has newly been considered in the nonfiction. Data MULES 

focuses on exploitation of mobile elements (called MULEs) in sparse sensor networks. The MULEs move 

randomly and collect data unscrupulously from sensor nodes. The movements of data gathering elements are not 

precise in this framework. In the message ferrying (MF) approach, message ferries are used to path data from 

one node to another in a spare ad hoc network. Based on a given traffic matrix, the aim of message ferrying 

approach is to find the best route of a ferry so that the average delay from source to destination is minimized 

while meeting the bandwidth obligation of flows. Associated to the MES problem are the Orienteering Problem 

(OP), the Prize Accumulating Traveling Salesman Problem (PC-TSP), as well as the original TSP. These 

problems deal with routing a vehicle to visit each city at most once. However in our problematic, a node may 

need to be stayed more than once before all other nodes are stayed because of the difference in buffer excess 

deadlines. In OP and Prize Collecting TSP, each city has an associated non-negative prize and the vehicle aims 

to collect the maximum total prize.  

      Though the mobile part in the MES problem also collects data that can be considered as prize, the 

value of the prize is forceful and depends on the time of the visit. The Vehicle Routing Problem (VRP) is 

defined as result a route for a vehicle that diminishes the total travel cost to deliver cargo between a siding and 

customers. Unlike TSP, VRP considers more than one vehicle and nodes can be visited more than once. Among 
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many variants of VRP, VRP with deadline and Intermittent VRP(PVRP) are relevant to the MES problem. The 

aim of VRP with Deadline is to program a vehicle to visit as many nodes as possible by their deadlines. Diverse 

from our problem, each node in Target VRP is visited at most once. Furthermore, the target of the visit to a node 

in Deadline VRP is static, whereas the deadline of a node changes enthusiastically in our case. Periodic VRP is 

the problem of conniving routes for delivery vehicles for a given T-day retro where not all customers require 

transfer on every day in the period. Customers are linked with a set of feasible schedules that are some 

amalgamations of days they can be visited.  

      In PVRP, the realistic solution set consists of a finite number of potentials. However, in MES, the 

feasible solution set consists of an unlimited number of possibilities such that thetime difference between any 

two successive visitsplanned to the same node is smaller than the associated buffer excess time. Moreover, in 

the MESproblematic, the vehicle does not need to go back to acertain node at the termination of every cycle 

whereas thevehicles in PVRP go back to the garage every day.Although the MES problem can be discretized 

inthe time territory, the resulting size of the practicablesolution set does not scale well with the range ofdata 

cohort rates.The MES problem in wireless sensor networks isverified to be NP-complete and three empirical 

algorithms are presented in. The first one is the Earliest Deadline First (EDF) algorithm, where thenode with the 

neighboringtarget is visited first. Toimprove EDF, the second algorithm, EDF with klookahead, is proposed. 

Instead of staying a nodewhose limit is the earliest, this algorithm considers thek! Permutations of the knodes 

with leastdeadlines, and chooses the next node which indications tothe earliest finish time. Accordingly, the 

EDF withk-lookahead algorithm achieves better than pureEDF. The third algorithm is the Minimum WeightSum 

First (MWSF) algorithm, which accounts forthe weights of deadlines as well as detachments betweennodes in 

defining the visiting schedule. TheMWSF algorithm achieves the best among thethree projected 

algorithms.Even though the MWSF solution considersboth deadlines as well as distances, ‘‘back-andforth’’ 

movement between far absent nodes occursregularly. In our proposed PBS algorithm, we consider the target and 

distances ofall nodes instantaneously and utilize a two-layer scheduling approachto diminish the back-and-forth 

movement behavior.This is achieved by separating the set of allnodes rendering to deadlines as well as their 

geographic locations. The resulting agendas andpaths are usually shorter, which diminishes the minimum 

required speed of the ME to avoid bufferexcess. 
 

1.2 PARTITIONING-BASED SCHEDULING ALGORITHM 
Partitioning-Based Scheduling (PBS) algorithm is intended to resolve the MES problem, and aims to 

schedule the visits of the mobileelement to each sensor to avoid data loss due to sensor buffer overflow. With 

the PBS algorithm, wefirst screen all nodes into several groups, calledbins, such that nodes in the same bin have 

similartargets. Then each bin is extra divided intosub-bins with respect to physical locations ofthe nodes. To 

decide the ME path within a singlesub-bin, we solve the Traveling Salesman Problem, which figures a minimum 

cost tour that stayseach node exactly once. Finally, the agendas forindividual groups are concatenated to form 

theentire schedule. While calculating the schedules, the data transfer time between the sensor nodesand the ME 

is also considered. We first planour system and problem formulation and thenpresent a detailed explanation of 

our solution to the MES problem. Problem formulation and notation and then present a detailed explanation of 

our solution to the MES problem in the remainder of this section.  

 

1.3 PROBLEM FORMULATION AND NOTATION 
Wireless sensor networks poised of standardized sensor nodes are considered. Thenodes are fortified 

with wireless communicationborders with limited ranges. Sensor nodes capturethe events in their surrounds and 

record them totheir buffers. The following conventions are alsomade regarding the sensor nodes and the mobile 

element. 
•The somatic sizes of sensor nodes and the mobileelement are insignificant. 

•The mobile element can move in any directionwithout any dormancy of making any turns. 

•Data transmission time between sensor nodes and themobile element is not insignificant compared to the delay 

due    

  to ME movement. Data transmission rate is denoted by.    
•All sensors have the same finite buffer size, and attime t= 0, all sensor node buffers start in anvacant state. The 

mobile element has suitablylarge data storage and it does not suffer fromthe buffer excess problem.We denote 

the number of nodes in the networkby N and the set of nodes by {  }, wherei=1,...,N. Let     denote the 

distance amidnodes  and  . The buffer excess time and datageneration rate of each node are meant by   and  
 , 

respectively. For a buffer of size b   
 

  
 . We assume that the data generationrate is directly related to event 

incidence rate.The MES problem ({   },{  }) is to find asequence of visits to nodes {  }, for i,j=1,...,N, and 

calculate the minimum speed Vmin of the ME so that no node buffer excess occurs. We attack the problem by 
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first overlooking the broadcast timebetween the sensor nodes and the mobile element, then including it 

appropriately into our calculations. 

 
II. Proposed Method 

2.1 THE PROPOSED MODIFIED PBS ALGORITHM 

Let  , j=1,...,M, denote bin j, where M is the whole number of bins. In PBS, nodes are first segregated into bins 

in such a way that excess timesof the nodes in bin   is smaller than those in   ,forj>i> 0. Moreover, the variety 

of excess timesfor nodes in    is twice that of  . This allows thenodes in   to be visited twice more frequently 

thanthe nodes in     during generation of the visitschedules. Then, each bin further is divided intosub-bins so 

that nodes in the same sub-bin are physical close to each other. This two-level dividing results in clusters of 

nodes with alikelimits and positions. Therefore, in each subbin, node visit schedule of the ME can be computed 

using a TSP solution. Finally, timetables fordiscrete sub-bins are concatenated to form theentire schedule that 

guarantees all deadline constraints are satisfied. In the following, we designate the details of the PBS algorithm 

outlined in Algorithm 1. 

 

2.2 Modified Bin partitioning according to overflow times 

Minimum and maximum excess times in thenetwork are defined as    =     {  } 

and     =     {  }, respectively, for i=1,2,...,N. Then nodes are assigned to bins according to the following 

equation: 

 
It shows an example of segregating nodesinto three bins. The overflow times of nodes in   range from     to 

     , the overflow times ofnodes in  range from      into      , and the excess times of nodes in  range 

from 4omintoomax.As far as PBS algorithm is concerned, there is nodiscrepancy between nodes in the same bin 

in termsof their excess times. Therefore, all nodes in abin  are considered as if they are allotted an excess time 

of     1    . Every bin is then visited at dissimilaroccurrences: all nodes in   are visited everycycle, nodes in 

  are visited every other cycle,and nodes in   are visited every four cycles, wherewe define acycleas a closed 

path among a set ofnodes, such that no node is encompassed more than oncein the same cycle. We also define a 

supercycleas aclosed path composed of concatenated cycles such that every node is comprised at least once in a 

supercycle. In our algorithm, the duration it takes for theME to complete a supercycle is defined as the periodof 

the ME schedule. The notions of cycle and super cycle in this context will be enlightened further in the 

following sections. 

 
 

2.3 Sub-bin partitioning according to locations 

Each bin obtained is then segregatedinto sub-bins according to the node locations suchthat the nodes in 

the same sub-bin are geographically close to each other.  

 
Fig1: The diagram of step 1: Partition according to overflow times 
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The number of sub-bins of a bin Bj is calculated based on the index j. As an example, the nodes in    need to be 

visited only half as recurrently as the nodes in  . Hence,    is segregated into two sub-bins:   
 and  

 , where 

  
 is visited every even cycle, and   

 is visited everyodd cycle. Following the same rule,B3 is subdivided into 

four sub-bins:   
 ;  

 ;  
 and  

 , and in general, bin   is subdivided into   
    sub-bins:   

 ;...;  
    I .In our 

case, we use the2D-tree where the two proportions are the lengthand width of the sensor deployed field. 

In each procedure call, the nodes are subdivided into two, based on the cut criteria decided by cut on x. Then, 

cut on x flag is negated and the route is called recursively on resulting panels untilthe desired 2D-tree depth is 

reached. 

An example of 2D-tree dividing for 16 randomly deployed nodes in the givenregion. As shown in the 

figure, the nodes are firstgeometrically divided into two composed parts bythe cut Awith respect to theirx-

organizes. Thenodes havingx-coordinates smaller than the average of the x-coordinates is assigned to one 

partand rest to the other.As the cutApartitions the region vertically, cutsBand C flatscreen the ensuing twoparts 

since they-coordinates of the nodes.This process is recurring alternately until the desirednumber of barriers is 

obtained. The number of screens, which is also the number of sub-bins in forming a TSP explanation on each 

sub-bin. The two-level separating results in clusters of nodes with similar targets and locations. Therefore, the 

ME arrangement problem is reduced to  

 
Fig. 2: Nodes in a 2 dimension space cut by KD-tree. 

The Traveling Salesman Problem (TSP) for each subbin. In the fiction, several algorithms to calculateTSP paths 

are projected such as the nearest neighbor, LKH, and Prim’s algorithm. In oursolution, we adopt Prim’s process 

to calculatethe TSP path. While any TSP algorithm can bemerged into PBS, we adopted Prim’s algorithm for its 

satisfactory TSP path length performance at the reasonable time complexity of O(N2). In PBS, the path of the 

ME is slightly differentfrom the computed TSP path such that the ME doesnot return back to the first visited 

node after stayingthe last node in the sub-bin. In its place, the ME visitsthe first node of the next sub-bin. Then, 

it follows the computed ME path in that sub-bin andproceeds to the following sub-bin. As a special case,in   
 , 

the node with the smallest overflow time istaken as the start node. 

 

2.4 Forming the super cycle: 
After the ME paths within the sub-bins are deliberate, the visit order of the sub-bins should bedecided 

to form the comprehensive ME path. At theend of partitioning, there are   
    sub-bins of bin  

 , each collected 

of nodes with deadlines at leasttwice the goals of the nodes in sub-bins of     , i=1,...,M. Therefore, in a 

rational MEschedule, sub-bins in the same bin should be visitedwith the same occurrence and a sub-bin 

in    should be visited twice more regularly than asub-bin of bin  . This heuristic choice results in asub-bin 

of   to be visited 2MI times for each visitto a sub-bin of bin BM. Remembrance that in a supercycleeach sub-

bin, hence each node, is stayed at leastonce. In other words, each sub-bin in the least commonly visited binBMis 

stayed at least once. Without loss of simplification, let the ME visit each sub-bin in BM exactly once in a super 

cycle. Then, a sub-binof bin   should be stayed exactly 2MI times in a super cycle according to our heuristic 

choice. Let Ii,j be defined as the supreme period between two consecutive visits to a node in sub   I . Then, the 

sufficient illness to avoid bufferexcess for all nodes ofBj I can be stated as Ii;j 

6omin                                                          2i1. ð3ÞLetLi,j denote the longest ME path between tworepeated 

visits to a node of sub-bin    I , i.e.,    =     ·v, where vis the speed of the ME. Hence, to evade buffer overflow 

in  I, vP  ; j      
   should besatisfied. This can be achieved by either swellingthe ME speed or 

decreasing    
 .  

Our objective ofdiminishing the ME speed for a lossless schedulecan be realized by minimizing     
 for each 

sub-bin and setting v to the largest compulsory value to satisfy Inequality (3) for every sub-bin.Since all sub-

bins are fashioned according to environmental proximity as well as excessaims,the TSP tours of sub-bins    
 of 

bin  
  of similar dimensions. In order to have a probable visiting schedule of sub-bins, we form cycles such that 

only onesub-bin from each bin is contained in a cycle. Furthermore, all cycles preserve the order of bins Bifrom 
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which sub-bins are selected. In particular, sub-bins are visited starting from   
  in increasingbin number order 

and a sub-bin in  
 is always stayed after the same sub-bin in    

 . This guarantees thatin every cycle that a sub-

bin   
  I is visited, the protuberancesin  

  are visited at precisely the same time as theywere stayed in the earlier 

cycle qualified to the starttimes of the cycles. The foundation behind this choicewill be debated in more detail 

in.There are two times more sub-bins in bin Bi than    
 and each sub-bin in  

  is always visited after the same 

sub-bin in     
 . For each sub-bin of     

  , we greedily timetable the closest two sub-bins from     
 to follow it. 

Note that more intricate concatenation algorithms can be used to further minimize thedistances between 

consecutively visited sub-bins.a visiting classification example of sub-bin sin a super cycle is given for M= 3. 

The supercycle inthis case consists of four cycles and the visit calendars of the sub-bins are as follows:  
 is 

visited every cycle,   
 is visited in cycles 1 and 3, and    

 is visitedin cycles 2 and 4 and the sub-bins of the last 

bin,   
 , are visited in cycles 1, 2, 3, and 4, one at a time 

 

2.5 Data transfer time considerations: 

Let   
  denote the smallest visit incidence for node   

 to avoid sensor buffer excess. Withoutconsidering 

the data program time and assuming a lossless schedule, the supreme durationbetween two consecutive visits to 

  
  is   

 . Thus,fi ¼1  
 . Considering the broadcast bandwidth, f I is determined by   

 ’s data cohort rate r I g, 

transmission ratertr and buffer size b.  

 
Then where b (b61) is the proportion fill level of the buffer of the sensori. The maximum duration between 

 
Fig. 3: An example of the visiting sequence of sub-bins in a ‘super cycle’ 

Two repeated visits is o   
  +   

 . Therefore, usingonewi ¼  
  þttr as the new excess time in PBS step1 (bin 

partitioning) will generate a schedule for MES with communication time attention. Note that b is node precise 

and is not known before.The case ofb= 1 refers to completely full buffersand the transmission time is the 

maximum. Therefore, a bvalue of 1 is chosen in our process aswe are involved in the lowest ME speed 

whichcan promise a lossless schedule. 

 

2.6 Discussion of minimum required speed: 

To minimize the power drinking of the ME,any solution to the MES problem should abatethe ME 

speed. In this paper, we calculate a lowerbound for the PBS results on the ME speed, denoted as    
 , such that 

no buffer excessbefallsin the network nodes. Considering an arbitrary node ni in bin   
 , let Li, kand Ci, k denote 

the path that ME has voyaged and the set of nodes ME has stayed between the k
th

 visit and (k+ 1)
th 

visit to   
 , 

respectively. The broadcast time at node   
  is denoted by tri. To avoid buffer overflow at node   

 , the following 

condition should be pleased: 

 
Where  

 vis the time ME spends on roaming between nodes and Pns2Ci;k  
 s is the total data communication 

time. To security no data loss at ni, the sum of these two terms should be less than or equal tothe excess time of 

  
 . According to Eq. (1),we have  

 62j    
 . Note that it is hard to find the databroadcast time for each node, but 

we can easilyfind the upper bound, which is the program time for  a full buffer by setting b= 1 in Eq.(6) 
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As stated in, the PBS procedureproduces a periodic schedule. Therefore, there isno need to keep track of all 

visits to the nodes. For a node in bin  
 , if there is no excess during  

   repeated visits, which occur during a 

singlesupercycle, no surfeit condition is definite. 

In general,     
 , i=1,2,...,N, k=1,2,...,    

 ,cannot be approached easily except for positivespecial distributions of 

sensor nodes. Once an MEcalendar is generated by the PBS algorithm,   
 and v I min, therefore     

 , can be 

added numerically. If the ME is controlled to move at a smaller speed than     
 , there may be data losses due to 

buffer overflow. Although not discussed in this paper, furtheroptimizations can be done for the laterdetached 

bytrading off performance of the former one. In theperformance study section, we also present thepresentation 

of our PBS algorithm as a function of the ME speed. 

 

III. Time Complexity Analysis 
Let N and M denote the amount of sensor nodesand number of bins, individually. Then, the complexity of 

PBS algorithm steps (Algorithm 1) areas follows: 

•Step 1: Segregating with respect to excess times can be reached by relating the overflowtime of each node with 

the bin restrictions resulting in complexity of O(NM). 

•Step2: In the topographicalseparating phase,the number of times a node in bin  
  is processedand assigned to a 

sub-partition is upper boundedby i-1. Since project is done by simplylinking the entreated coordinate of the 

nodewith the average, it is O(1). In the worst case,all nodes except the one with the smallest overflow time are 

in bin  
 , therefore the intricacyof the 2D-tree algorithm is O(NM). 

•Step3: The complexity of manipulative TSP pathby Prim’s algorithm for N nodes is O(N2).Assume that each 

sub-bin is assigned a singleidentity from the set U= {1,2,...,2M1}.Recall that   
    is the total number of 

subbins. Let  
  denote the quantity of nodes in thesub-bin with identity i2U.  

 
Step4: In concatenation step, first the epicenter ofgravity for each sub-bin is considered in O(N) time. For each 

sub-bin   
 , two sub-bins in   

   with epicenter of flagrancies closest to that of  
  I areparticular to be visited 

after Bj I . If a selected sub bin is already decided to be visited after another sub-bin in Bi, the next closest sub-

bin to  
  I is measured. Since there are   

   sub-bins in   
 i, it takes   

   ·  
 =  

    comparisons for each 

bin.Therefore, the time intricacy of the concatenation step is O(N+4M).Accordingly, the PBS algorithm has an 

general time complexity of O(N2+4M). 

 

3.1 Performance evaluation: 
To evaluate the presentation of our projectedPBS algorithm considering transmission time, wehave run an 

extensive set of imitations. In this simulation study, the following scenarios are measured for performance 

evaluation. 

•Simulation I: We observe the data injury rate as afunction of the mobile division speed. 

•Simulation II: We observe the consequence of the nodedensity on the smallest required ME speed to prevent 

data  loss in the PBS algorithm. 

•Simulation III: The consequence of number of bins onthe presentation of PBS algorithm is evaluatedfor 

different network sizes and properties. 

•Simulation IV: We perceive the impact of sensor buffer size in sensor nodes on the routineof the PBS 

algorithm. 

•Simulation V: The effect of wireless communicationrate between sensor nodes and ME on the dataloss rates is 

analyzed. 

•Simulation VI: Sensor visit obviousness is investigated as a function of extratime and nodedensity through 

inspection of the standard unconventionality of inter-visit times.All reproductions except for Simulation III are 

alsorun for the MWSF algorithm to compare the presentation of the procedures. The details of thesimulation 

setup as well as the comprehensive discussionof the results are presented in the following sections. 
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3.2 Metrics and methodology: 
We observe the following metrics to evaluate thepresentation of the PBS algorithm. Data loss 

occurrence rateis definite as the ratio ofthe number of sensors absent their deadlines to the total number of nodes 

visited. It presentsthe recital in terms of the number of sensors absenttheir deadlines rather than theamount of 

data lost. 

•Data damage rateis defined as the ratio of the datalost due to buffer excess to the total amountof data generated. 

•Minimum compulsory speedis defined as the minimum speed of the mobile element to thwartany buffer 

overflow. 

•Certainty is defined as the standard eccentricityof the inter-visit duration which is the durationbetween two 

visits of the ME to the same node. 

The simulator is developed in C++ language. Agraph generator forms the accidental sensor networktopology 

and regulates the sensor data generationrates and excess times according to the scenarioat handThen, we 

pretendthe visits of the ME to each sensor node in a distinctmanner by keeping track of the time. After eachvisit, 

the existing time is incremented by the timethat ME spends wandering from the previous nodeto the current 

node. If the time between two succeeding visits of the ME to the same node exceeds thenode’s deadline, then 

data loss occurs. In such acase, the loss is recorded in the simulation.In our simulations, we use the following 

defaultsettings unless specified otherwise. Each simulationis run on a network with 200 sensor nodes 

randomlyplaced following the uniform distribution on a200 m·200 m area. Each sensor node is armedwith same 

size buffers (10 Mb). Data broadcastrates between sensor nodes and the ME is 500 kb/s. To pretend this, we 

assume that eventsare powerful at certain locations, which we call Eyes. The nodes in the eye meridians have 

the highestdata cohort rates, which drops radially outward. Four topologies,1A, B, C, and D, are considered in 

our imitations. Topologies A, B, and Chave one, four, and nine eyes, correspondingly. Topology D corresponds 

to regularly distributed datacohort rates over the sensor network. It can alsobe considered as having infinite 

number of eyes. Theradius of each concentric circle is denoted byR1,R2,R3,...,Rn, where R1= 20 m. The value 

ofeach range is calculated as Ri ¼i R1; i¼1;...;n. 
The nodes in the deepest region are assignedtheminimum overflow time, which is called the base_time, and 

excess times for nodes in regions radially superficial are calculated as:  

Overflow Time i =base_time+(i1)Æ step, i=1,...,n, 

Where excess Time i is the overflow time allotted to nodes inRegioni andstep is the size of the increments. In 

our simulations, we take base_time as 500 s and500 s forstep. Similarly, we consider the grids withfour eyes and 

nine eyes as shown. We shoulder the data size is 16bits.Therefore, for a node with specimen frequency of100 

Hz, the data cohort rate is 1.6 kb/s andthe corresponding buffer overflow time is 6250 s.We have run the 

experiments for both PBS andMWSF algorithms on all four topologies to makethe assessments. The MWSF 

procedure is run with weight a= 0.1, where a is the weight of deadline, and 1ais the weight of coldness. 

According tothe experimental effects in [17], MWSF algorithmyields the best recital when the value of a is 

around 0.1. We measured PBS with the default bin number M= 3 unless specified otherwise. 

 

3.3 Impact of the ME speed on data loss: 

 
Fig.4: 

It show data loss incidence ratesand data loss rates for reproductions run with bothPBS and MWSF 

procedures on topologies A, B, C,and D. We have composed experimental results fordifferent speeds of the 

mobile component ranging from0 m/s to 5 m/s. Loss rates range from 0 to 1, whichresemble to the no loss and 

complete loss cases, respectively. In both figures, loss rates decrease with the increased speed Compared to 

MWSF, the loss rate of PBS procedure decreases at a higher rate as the speedincreases. Therefore, we conclude 

that the PBS procedure is more effective in terms of plummeting the loss rate. 
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3.4 Impact of node density on minimum required ME speed: 
In this section, the impression of the node compactness isappraised to observe the scalability of the PBS 

algorithm. In this reproduction the number of nodesdeployed on a 1 km2 area is varied between 150 and 200. 

With the increasing node density, we amount the smallest required speed of the ME to evade buffer excess. 

Figure shows the results of running this simulation on four topologies. 

 
Fig 5: 

As expected, the least required speed upsurgeswith the increasing node compactness. When the 

nodecompactnessincreases, the path length in a super cycle upsurges, as well. This leads to a higher ME 

speed.The least required speed by the PBS procedureis in general inferiorthan the MWSF procedure on thesame 

topology. The minimum required speed for Topology A is lower than B, which is lower thanC. The minimum 

required speed for Topology Dis the maximum. The path that ME covers in a super cycle is longer when the 

number of eyes is larger. 

 

3.5 Impact of number of bins on data loss: 
In this section, we study how the number of bins M disturbs the presentation of the PBS algorithm .M = 

1 resembles to the case where all the nodesare delimited in one bin and are visited every cycle.No 

physicalsegregating is used in this case. When M> 1, nodes are first partitioned accordingto overflow times and 

then separated geographically. When M= 1, the super cycle is corresponding to the TSP solution overall nodes. 

On the other hand, if M> 1, the super cycle consists of TSP responses in each sub-bin, andthe trackspresented 

due to concatenation step. 

 
Fig 6: 

Therefore, it is predictable that with M= 1, the ME visits a larger amount of nodes within a given time period 

compared to M> 1. If the ME hurry is verysmall, almost every node buffer will be full at thetime the ME visits 

them. Hence, by staying a largeramount of nodes in a given time period, data lossrate is smaller with M= 1. As 

the ME speed getslarger, visiting nodes with high excess times asregularly as those with low overflow times 

willannounce redundancy for M= 1 case. It can also be observed that a large number ofbins provides much 

smaller minimum speed toavoid buffer overflow. As an example, when the data loss rate for M= 4 case drops to 

zero, the curve for M= 1 case still asymptotically approaches x-axis. Scheduling with small numberof bins 

sacrifices performance on nodes with lowoverflow times severely. Therefore, although the presentation of 

scheduling with one bin schemehas smaller data loss when movable element movesat lower speeds, its 

advantage disappears for moderate and high hurries. 
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Fig 7: 

3.6 Impact of buffer size: 
Figure the influence of buffer size on datadamage rate for both PBS and MWSF on differenttopologies. 

The buffer size varieties from 1 Mb to 80 Mb. The ME is running at a speed of 1 m/s.We observe figurethat the 

data loss rates ofboth PBS and MWSF drop as buffer sizeupsurges. With the larger buffer but the same 

datacohort rate, all sensors have more volume tocarry data and have larger overflow time. Whenthe ME is 

running at the same rapidity as before, itcan gather more data. Thus the data loss rate decreases with swelling 

buffer size. We also noticethat the routine of PBS is much better thanMWSF except when the buffer size is 

awfullylow. When the buffer size goes toinfinity, there should not be any data loss in theideal case. Therefore, 

all curves converge to zero. 

 
Fig 8: 

3.7 Impact of transmission rate: 
The wireless transmitter on the sensor nodes alsohas impact on the trade-off between cost and 

performance. The transmission rate affects the power consumption at each sensor node, which is the 

currentmajor bottleneck of WSNs.shows theimpact of transmission rate on the performance ofPBS and MWSF 

on four topologies. Transmissionrate ranges between 0.1 Mb/s and 1 Mb/s. Thespeed of the ME is chosen as 1 

m/s. For both PBSand MWSF, the data loss rate is decreasing withthe increasing transmission rate. When the 

transmission rates are the same, performance of PBS inTopology A is better than Topology B. Performancein 

Topology B is better than Topology C, which isbetter than Topology D. On same topology, dataloss rate for 

PBS is less than MWSF. Larger transmission rates lead to smaller transmission times.Spending smaller portion 

of time on data transmission, the ME visits more nodes before their buffers overflow. Thus, the data damage rate 

decreases astransmission rate upsurges. When the data transmission rate goes to infinity, the ME actually 

visitsone sensor node, then moves to the next node immediately without stopping. Hence, all curves in Fig.12 

are expected to converge to non-negativevalues. 

 
Fig 9: 
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3.8 Sensor visit predictability: 
We claim that our PBS proceduredelivers periodic supercycle scheduling. While thisin correct, the 

inter-visit times for a given sensor ina supercycle are not essentially equally spaced. Inthis section, we analyze 

the difference between intervisit times of the ME to a given sensor node for dissimilar sensor excess times. The 

standard deviationof inter-visit periods is used to amount the certainty of visits to sensor nodes, which shows the 

periodical feature of our arrangement scheme. We observethe predictability of sensor node visit times as a 

function of different data generation rates. We focus onthe standard deviations of inter-visit periods andgroup 

the falloutsaccording to runoff times.shows the results of running PBS and MWSFprocedures on Topologies A, 

B, C and D. To pledge the sureness interval, each result is the averagevalue of 5000 independent runs. We 

choose 1 m/s asthe speed of the mobile element, where buffer overflows still occur. As expected,shows thatthe 

ordinarynonconformity of inter-visit times for PBSis much smaller than MWSF for all excess  timevalues. 

Likened with the MWSF algorithm, PBS provides higher predictability for the visits to sensornodes due to 

higher periodicity.Furthermore, note that the ordinaryaberration ofinter-visit times of PBS decreases as the 

excesstime of sensor nodes growths in general. Especiallyfor nodes with high excess times, the 

standardeccentricity is nearly zero. Therefore, the PBS procedurefavoritisms nodes with high excess times 

withhigh predictability. This is due to the statistic that thenodes with high excess times are visited less 

frequently and more periodically. Especially the nodesof the past bin are visited once every supercycle. 

Thelength of the supercycle is always the similar. But dueto dissimilar length of cycles the broadcast times for 

nodes are not always the same. Therefore, theperiod of supercycles are almost the same with somesmall 

differences. The standard nonconformity of inter appointment times for these nodes is close to zero. Notice that 

for MWSF in Topology A, the standard eccentricity of inter-visit period increases asoverflow time increases, 

while Topology B, C andD do not reflect such behavior. Exploratory the MWSF scheme with topology A, since 

nodes in the central region have smaller excess times, mobilecomponent would visit this region more normally. 

Thisleads the ME to visit nodes with small excess times with more unsurprisingly. Because of the long 

distancebetween the authority areas and the center of the eye intopology A, the mobile element’s visit is more 

volatile for the nodes in the edge area. However, intopology B with four eyes and topology C with nineeyes, 

nodes with high stayingincidences is morebinge over the entire region and the expectednessis more composed 

for all nodes. 

 

IV. Simulation Result: 
We assume that UMs are generated infrequently, and therefore, multi-hop transmission of UMs does 

not have significant impact on the network lifetime. Even if multi-hop transmission is allowed, network 

partitioning and increased transmission delay to reach farther nodes may prohibit some UMs to be delivered 

before their deadlines.In such cases, MRME selects a set of nodes to reduce their overflow times before 

scheduling the ME path using PBS. Although such reductions guarantee the worst case delay to be below a 

threshold, it also results in an increased ME speed for lossless schedule since selected nodes will be visited more 

frequently than before. Therefore, MRME aims to minimize the ME speed while reducing overflow times to 

meet the specified UM delay. We compare our algorithm with Minimum Weighted Sum First algorithm and 

showed that our PBS algorithm provides higher performance in terms of decreasing loss rate, reducing the 

minimum required speed, and providing high predictability. 

 
 

V. Conclusion 
The sensor nodes may have unalike data cohort rates, which pointers to theMobile Portion Scheduling 

Problem. In this paper, we proposed a Partitioning-Based Scheduling (PBS) procedure to report this problem. 

We comparedourprocedure with Least Weighted Sum Firstalgorithm and showed that our PBS algorithm 

provides higher performance in terms of decreasing lossrate, dipping the leastcompulsory speed, andproviding 
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high predictability. Our future workincludes investigation of methods to utilize morethan one mobile element 

for data collection and tocater to the needs of vital real-time announcement events. 
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