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Abstract: This paper discuss about new AM-FM methods for image reconstruction. This approach is based on 

2 basic ideas: i) AM-FM Demodulation using new gabor filterbank ii) New accurate methods for instantaneous 

frequency (IF) estimation. This project includes quasi-eigen function approximation(QEA), quasi local 

method(QLM) and variable-spacing local linear phase (VS-LLP) methods for improved accuracy. The new VS-

LLP method is a generalization of QEA method where we choose the best integer spacing between the samples 

to adapt as a function of frequency. We also introduce QLM method for IF and IA estimation. We present 

different noises (salt&pepper, speckle, poisson, Gaussian) decompositions to show that the proposed methods 

can be used to reconstruct and analyze general images. However each technique has different properties, 

making it more suited for specific applications and this technique is implemented  by using MATLAB. 

Key words: Amplitude modulation Frequency modulation(AM-FM), Image reconstruction, Instantaneuos 
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I. Introduction: 

Image reconstruction  techniques are used to create  2-D and 3-D images from sets of 1-D projections. 

The development of accurate methods for estimating amplitude modulation frequency modulation image 

decompositions is of its great interest due to its potentially significant impact on image analysis applications.   

          A general AM-FM representation model approximates using 

                 

 
In eq.(1), an image I(x,y) is approximated by an AM-FM image a(x,y)cosφ(x,y). The AM function a(x,y) is 

assumed to be non-negative, slowly varying functions which corresponds to the component texture envelops or 

contrasts.  the context of this paper, we will consider the cases when (single scale) to 4 (three scales), and The 

phase φ(x,y) of the FM function cos ψ(x,y) captures fast changing spatial variability in the image intensity. For 

phase function φ(x,y) we define the instantaneous frequency in terms of Δ 

 

    (2)    
 

Δ is a gradient operator. 

There is strong interest in the development of AM-FM models due to the wide range of applicatons in various 

areas in signal, image and video processing. Non stationary images are represented using AM-FM components 

interms of amplitude and phase functions. 

             There has also been significant research on  the use of AM-FM components to reconstruct digital 

images. Analytic image methods methods for AM-FM demodulation are based on the extendind notion of of the 

1-D analytic signal to 2-D or simply to provide a Hilbert based extension of the 1-D Hilbert based demodulation 

approach. This approach provides a unique AM-FM demodulation methods that satisfies certain conditions, they 

are i)amplitude continuity and differentiability, ii)phase independence of scaling and homogeneity, and 

iii)harmonic correspondence. 

            In this we will consider multiscale. The term scale refers to collection of  bandpass filters as low pass 

filter, very low frequencies, low frequencies, medium frequencies and high frequencies. This multiscale 

approach is a special case of general multicomponent in the sense that  the AM-FM scale components are not 

allowed to overlap in the spectral domain and each component is further restricted to  specific passbands. 
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           We employ several new techniques to improve the accuracy of our estimates. To improve IA estimation, 

we propose the use of optimally designed digital filters as like min and max filters to reduce noise like salt and 

pepper etc. The optimally designed digital filters allow us to control the passband gain to be close to unity while 

reducing the stop band gain to be closer to zero. hence interference from the stopband can be effectively 

controlled by keeping the stop band gain very low.  

          In this paper we estimate the instantaneous frequency using the 3 methods QEA, QLM, VS-LLP.        

 Instantaneous frequency (IF) is a very important parameter in a large number of applications. Generally, the IF 

is a non-linear function of time. For such cases the analysis of timefrequency content provides an efficient 

solution. 
II. Methodology: 

  Analytic image methods for AM-FM demodulation are based on providing a Hilbert-based extension 

of the ID Hilbert-based demodulation approach. Here, the basic idea is to simply apply the ID Hilbert operator 

along the rows (or the columns). The fundamental advantage of this approach is that it preserves the 2D phase 

and magnitude spectra of the 2D input image. In fact, implementation involves taking the 2D FFT of the input 

image, removing spectral frequency with a negative row-frequency component, multiplying the result by 2, and 

taking the inverse 2D FFT. Given the conjugate symmetry of 2D images, the removal of two frequency 

quadrants does not result in the loss of any spectral information. Furthermore, it can be shown that for single-

component AM-FM signals, this can lead to exact demodulation. In practice though, we replace derivatives by 

finite differences.   Given the input image , we first apply the partial Hilbert transform  to form a2-D extension 

of the 1-D analytic signal. This signal is processed through a collection of bandpass filters as is showed in Fig. 

1. Each processing block will produce the instantaneous amplitude, the instantaneous phase, and the 

instantaneous frequencies in both and directions by means of either the QEA method or the QLM method. The 

basic idea is to apply dominant component analysis over each scale. The approach produces a single AM-FM 

component from each scale. The algorithm adaptively selects the estimates from the bandpass filter with the 

maximum response. This approach does not assume spatial continuity and allows the model to quickly adapt to 

singularities in the image. 

         
  Fig1. Multiscale AM-FM demodulation.  

 

The extended analytic signal will only have support in the lower two quadrants. Thus, in effect, each channel 

filter operates over a single quadrant. The filters were designed using an optimal min-max, equiripple approach. 

Passband ripple was set at 0.017 dB and the stopband attenuation was set to 66.02 dB. For the transition 

bandwidth, we require that i) it remains lower than the passband bandwidth, and that ii) it remains sufficiently 

large so that the passband and stopband requirements can be met with a reasonable number of digital filtering 

coefficients. Here, we note that the transition widths are relatively less important for the high frequencies,since 

they also come with filters of larger passband bandwidths.On the other hand, low-frequencies require relatively 

larger transition widths (from stopband to passband) since images contain larger, low-frequency components 

and the transitions occur over smaller passbands. 
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III. AM-FM Demodulation Methods: 
We can use QEA, QLM and VS-LLP methods. The advantage of these methods is that they operate with 

sums and products of four local image samples.  

 

 QuasiEigenfunction Approximation(QEA): 

For the Quasi-Eigen function Approximation (QEA) methods we work with sums and differences of 

pairs of image samples. Here, we compute the 2-D extended analytic signal associated with I(x,y). The 2-D-

extended analytic signal is computed using 

 

 
 

Where H2d denotes a 2-D extension of the 1-D Hilbert transform operator. The 2-D operator is defined in terms 

of the 1-D operator, operating in either the x or the y direction 

 

 
 

For developing the algorithm, we assume that ideal samples of the continuous-space image are available to us 

and we write as 

                 

                I(k1,k2)≈a(k1,k2) cos φ(k1,k2)               (5) 

 

Where k1 and k2 assume integer values of the continuous-space arguments x and y. Thus, in what  follows, we 

will interpret I (k1, k2) as a continuous-space real-valued function. We compute the 2-D-extended analytic 

signal using the partial Hilbert Transform implemented using the fast Fourier transform (FFT). The 

instantaneous frequency can be 

estimated using inverse trigonometric functions .  

     

 Quasi Local Method(QLM): 

 

For the 1-D Quasi-local method (QLM), we work with products of pairs of image samples. The Quasi-Local 

Method (QLM) was introduced, for 1-D signals and half the discrete frequency spectrum.        

     Consider the continuous space signal, ideally sampled at the integers. 

     

            f(k1,k2) = a(k1,k2) cosφ(k1,k2)                 (6)   

Similar analysis is done for the direction. In order to avoid aliasing, the IF of the input signal must be restricted 

to 0<∂φ/∂x<πfs/2 , for the -direction, where is the sampling frequency. A similar condition is required for the -

direction. It is proposed to either resample or oversample the input signal with a higher in order to overcome this 

restriction. 

 

IV. Salt & Pepper Noise: 
Images generally contain noise. Hence the wavelet coefficients are noisy too. In most applications, it is 

necessary to know if a coefficient is due to signal or to noise In this project we have to reconstruct the images 

with better accuracy after applying the following noises.Salt and pepper noise is a form of noise typically seen 

on images. It represents itself as randomly occurring white and black pixels. An effective noise reduction 

method for this type of noise involves the usage of a median filter, morphological filter or a contra harmonic 

mean filter. Salt and pepper noise creeps into images in situations where quick transients, such as faulty 

switching, take place. 

         Fat-tail distributed or "impulsive" noise is sometimes called salt-and-pepper noise or spike noise. An 

image containing salt-and-pepper noise will have dark pixels in bright regions and bright pixels in dark regions. 

This type of noise can be caused by analog-to-digital converter errors, bit errors in transmission, etc. It can be 

mostly eliminated by using dark frame subtraction and interpolating around dark/bright pixels.The purpose of 

this challenge is to illustrate that spectral filtering methods may not always be successful when the noise in the 

image is highly non-Gaussian. We consider salt-and-pepper noise, for which a certain amount of the pixels in 

the image are either black or white (hence the name of the noise). Salt-and-pepper noise can, e.g., be used to 

model defects in the CCD or in the transmission of the image. Given the probability r (with 0 · r · 1) that a pixel 

is corrupted, we can introduce salt-and-pepper noise in an image by setting a fraction of r=2 randomly selected 
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pixels to black, and another fraction of r=2 randomly selected pixels to white. Simple de-noising of such images 

by means of low-pass filters. 

 

V. Gaussian Noise: 
The stochastic processes of almost exclusive interest in modeling channel noise are the Gaussian 

processes. Gaussian processes are stochastic processes for which the random variables N(t1),N(t2),...,N(tk) are 

jointly Gaussian for all t1,...,tk and all k > 0. Today we start by giving a more complete discussion of jointly 

Gaussian random variables. 

We restrict our attention to zero mean jointly Gaussian random variables and zero mean Gaussian processes, 

both because a mean can be trivially added to a zero mean fluctuation, and because zero mean processes are 

used to model noise. 

White Gaussian  noise: 

Time domain view: 

Physical noise processes are very often reasonably modeled as zero mean, effectively stationary over (−T0,T0), 

and Gaussian. There is one further simplification that is often reasonable. This is that the covariance between the 

noise at two epochs dies out very rapidly as the interval between those epochs increases. The interval over 

which this co- variance is significantly non-zero is often very small relative to the intervals over which the 

signal varies appreciably. What this means is that the covariance function KN(τ) looks like a short duration 

pulse around τ = 0. 

 
VI. Poisson Noise: 

Poisson noise is used to improve the image accuracy in image processing. The psnr ratio is higher than 

other methods. Dissimilarities in the analysis of Gaussian and PoIsson noise functionals can be found in may 

ways. Infinite symmetric group gives an invariance of Poisson noise mea- sure. This property is compared with 

the fact that the infinite dimensional rotation group give an invariance of white noise measure and even gives a 

characterization of Gaussian measure. Unitary representation of the infinite symmetric group shows a 

particularly potent properties of  Poisson noise. 

 

VII. Speckle Noise: 
Speckle noise is a granular noise that inherently exits in and degrades the quality of the active radar and 

synthetic aperture radar (SAR) image. Speckle noise in conventional radar results from random fluctuations in 

the return signal from an object that is no bigger than a signal image processing element. It increases the mean 

grey level of  a  local area. 

Speckle noise in SAR is generally more serious, causing difficulties for image  interpretation. 

      

PSNR ratio table form: 

 

 

 

 

 

 

 
VIII. Results: 

For all experiments, we add salt and pepper noise. We measure performance using the mean-squared 

error (MSE) and the peak signal-to-noise ratio (PSNR). For computing the PSNR in the estimates we use 

20log10(A/√MSE), where A=100 for the IA (maximum amplitude), and A=Π for the IF.  

       we present IF estimation results for QLM, QEA, and VS-LLP . Here, we compare QLM, QEA, and the 

modulation version of VS-LLP. 

 

 

 

 

 

 

 

 

Methods Gaussian 

noise (PSNR 

ratio) 

Poisson 

noise (PSNR 

ratio) 

Salt& pepper 

noise (PSNR 

ratio) 

Speckle 

noise (PSNR 

ratio) 

QEM -1.4251 5.9164 -4.0977 -0.9395 

QLM 7.9269 8.144 7.7238 7.9929 

VSLLP 19.9202 26.0833 17.3423 20.3913 
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SALT & PEPPER NOISE: 
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GAUSSIAN NOISE: 
Degraded Image
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VSLLP
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 SPECKLE NOISE: 
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QEM

PSNR: -0.92217
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POISSON NOISE: 
Degraded Image
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IX. Conclusion: 
The first step in developing new AM-FM methods was to design a new multiscale filterbank. The 

almost flat response in the bandpass frequency of the 1-D filters eliminated errors due to the use of an amplitude 

correction as in the case of using Gabor filterbanks. The use of these filters in the AM-FM demodulation 

problem produced big improvements in the IA and IF estimations. We developed a new method for accurate IF 

estimation: VS-LLP. For noisy signals, VS-LLP produced significantly better results than other methods such as 

QEA or QLM. We have also developed new QLM methods for IA and IF estimation for digital images. 
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