
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. III (Mar - Apr. 2014), PP 82-86

www.iosrjournals.org

www.iosrjournals.org 82 | Page

Reduction of Bitstream Transfer Time in FPGA

Snehal S. Khartad, Prof. Pravin Matte
Dept. of E & TC Engineering G.H.R.C.E.M., Wagholi Pune, India

Dept. of E & TC Engineering G.H.R.C.E.M., Wagholi Pune, India

Abstract: In reconfigurable system, the size of bitstream and memory is reduced using bitstream compression.

By reducing the reconfiguration time, the system can improve the communication bandwidth. Existing system

shows that, at the cost of compression efficiency effective compression is achieved with slow or fast

decompression rate. To improve both compression and decompression efficiencies, this paper proposes a new

technique i.e., decode aware compression technique. Different approaches for the proposed system are i) A

large set of matching pattern is created by using effective bitmask selection technique. ii) Using the bitmask and

dictionary selection technique, a bitmask based compression is achieved because of which there is an efficient

reduction in memory requirement. iii) Repetative patterns are generated by grouping bitmask based

compression and run length encoding. Finally, using decompression engine the original bitstream can be

generated.

Index Terms: Bitstream, Field Programmable Gate Array (FPGA), reduction, transfer time.

I. INTRODUCTION
Field programmable gate array are revolutionary device which combine the benefits of hardware and

software. FPGA are used to increase the effective size and increase the number of function which is commonly

used in reconfigurable system and application specific integrated circuit (ASIC). It is used to stored configuration

bitstream on memory. This configuration information has to be stored in internal or external memory of FPGA in

the form of bitstream. This typically starts with an application program written in a HDL (Hardware Description

Language) such as Verilog or VHDL. This design is further forward through a series of steps which are

mentioned below.

Fig 1 shows the typical mapping flow of FPGA , that is how bitstream formation takes place.

 First step is a logic synthesis which convert high level logic into gate level logic i.e.; structural and

behavioral code converted into logic gate. Second step is mapping technology in which gates are separated and

again grouped to get the best match of FPGA logic resources. The next step is placement which assign the logic

grouping into specific logic block and routing determine the interconnect resources that will carry the user signal.

Finally, system performs bitstream generation which creates binary files. These binary files are then compressed

using various algorithms which help to solve the memory related issue. In the previous technique, if the

compression is increased the decompression is lower and if we try to increase the decompression rate it result in

slow compression. The proposed system try to balances both the compression and decompression. Thus the

proposed compression technique is very efficient for bitstream compression [5] because of its simple

decompression scheme and good compression ratio. The compression ratio is defined as ratio between

compressed bitstream size and original bitstream size. Therefore, the propose technique compress the bitstream in

a very efficient manner than the existing technique.

Fig. 1. Typical FPGA mapping flow.

Source Code

Logic Synthesis

Technology mapping

Placement

Routing

Bitstream Generation

Binary Files

Reduction of Bitstream Transfer Time in FPGA

www.iosrjournals.org 83 | Page

 Section 1 introduces the paper, Section 2 describes Literature Survey, Section 3 explains proposed system,

Section 4 shows results and Section 5 and 6 are conclusion and references respectively.

II. LITERATURE SURVEY
To compress the configuration bitstream, numbers of compression algorithm are used. Previously, a

number of studies focused on FPGA bitstream compression. One of the most notable is family of vertex product

[6] .This family of FPGA examines an extensive range of technique, read back and frame recording and proposes

a wildcard technique such as Huffman coding. But the Huffman coding is not appropriate for real time coding due

to large amount of calculation. Also for computing of Huffman coding considerable time is required. The Xilinx

XC6200 series of FPGA support wildcard compression scheme. The better redundancy is achieved by using

frame reordering and active frame read back given by Pan et al. [1]. Using Huffman based run length encoding or

LZSS based compression, the difference between consecutive frames is encoded. Such schemes demand excellent

compression however the decompression overhead [1] is a major concern.

During decompression, the bitstream compression techniques access the configuration memory which is

applicable to all FPGA’s. This technique based on divide and conqueror strategy i.e., the entire bitstream is first

divided into small words which is then compressed using various algorithm like Huffman coding, arithmetic

coding or dictionary based compression. Furthermore a bitstream compression algorithm which is based on LZ77

is proposed by Xilinx [9]. LZSS based technique for Xilinx vertex XCV2000E FPGA is proposed by Huebner et

al. To achieve fast decompression, the decompression engine is carefully design. The algorithm like LZSS help

us to maintain decompression overhead but the compression efficiency is very poor. On the other hand complex

algorithm achieves better compression but it is very difficult to maintained decompression overhead.

The decompression through put of complex compression algorithm is increased using parallel decompression.

To enable parallel decompression Qin et al introduced a placement technique of compressed bitstream. However

the area overhead is also multiplied because of not a single change in decoder and buffering circuitry. In contrast

propose technique try to balance both compression and decompression. This is done by effectively addressing the

buffering circuitry problem to improve the maximum operating frequency of the system.

III. PROPOSED SYSTEM: IMPLEMENTATION DETAILS
The block diagram of proposed system is shown in fig.2. In this system, the input is applied to the

compression algorithm. Before proceeding for compression algorithm, it is first converted into binary files i.e.,

bitstream. Afterward the compressed bitstream are loaded into memory. During the program execution

decompression is done. The function of decompression hardware is to decode and transfer the bits from memory

which are already compressed and then transferred to the configurable logic blocks (CLB) of memory. As an

output we get the original signal similar to input. The major contributions of proposed system are as follows.

i) The bitstream are compressed as much as possible.

ii) Without affecting the reconfiguration time, the effective decompression is achieved.

Fig. 2. Architecture of proposed system

Algorithm for Decode Aware Bitstream Compression

Input : Bitstream

Output : Compressed Bitstream placed in memory.

Step 1 : Divide input bitstream in Fixed size symbols.

Step 2: Perform Bitmask based pattern selection

Step 3: Perform Dictionary Selection.

Step 4 : Compress symbol into code sequence using Bitmask and RLE.

Step 5: Perform Decode Aware Placement of code.

Reduction of Bitstream Transfer Time in FPGA

www.iosrjournals.org 84 | Page

IV. DECODE AWARE COMPRESSION TECHNIQUE

Fig. 3. Decode aware compression

Figure 3 shows the block diagram of decode aware compression technique [9]. In this technique the original

bitstream is applied to the compression algorithm consist of dictionary selection, bitmask selection and RLE

algorithm to get the compressed bitstream. To place this compressed bitstream in the memory, placement

algorithm is used. This compressed bitstream from the memory are further transmitted to the decompressor to get

the original bitstream.

A. Dictionary Based Compression

This technique provides better compression output as well as fast decompression rate [10]. In dictionary

selection commonly occurring instruction sequences is taken [9]. If the pattern contains the repeating occurrences

then the sequences are replaced with a code word which point to the index of the dictionary. Thus the compressed

code (bitstream) consists of both code word and uncompressed instruction. Fig.4 shows an example of dictionary

based code compression using a simple binary program. The dictionary file has two 8-b entries and the binary

consist of 10 8-b pattern i.e., 80-b. The dictionary required 16-b entries and the compressed bitstream require

62-b entries. Thus the compression ratio is 97.5%. As the compression ratio for the dictionary selection is large

enough it is not a good compression technique. Therefore the bitstream which cannot be compressed by using

dictionary selection that can be compressed that bitmask selection which results in smaller compression ratio.

Fig. 4. Bitstream compression using dictionary selection.

B. Bitmask Based Compression

This technique is used to set certain bits using bitwise OR and invert them by using bitwise XOR. Bitmask

based technique consist of a pattern of binary values combine with some value, where the mask is zero or also set

to zero using bitwise AND. Without adding the significant cost, this approach helps to improve the compression

ratio. In bitstream compression the selection of bitmask plays a vital role as it helps to compress the bitstream

which cannot be compressed using dictionary selection. Figure 5 below shows the compression using bitmask

selection [5]. By using this technique the compression ratio is improved , by keeping the decompression

efficiency same as compared to the existing technique.

Dictionary
selection

Bitmask
selection

RLE

Original
Bitstrea

m

Compressed
Bitstream

Dictionary
selection

Decompressor Original
Bitstream

Reduction of Bitstream Transfer Time in FPGA

www.iosrjournals.org 85 | Page

Fig. 5. Bitstream compression using bitmask selection.

C. Run Length Encoding Technique

Repeating bit sequences usually found in configuration bitstream. Run length encoding of such sequences

may yield a better compression result [2],[4], though such patterns encoded using bitmask based compression.

Such encoding doesn’t require any extra bits [5] .Thus the bits are saved using run length encoding. In this

technique zero is never used, because it means an exact match which must be encoded using zero bitmask.

Considering this bitmask as a special marker, this repetition can be encoded without changing the code format of

bit masked based compression. Without changing the code format of bitmask based compression, the repetition of

sequences can be encoded and RLE yield a shorter code length than the original bitmask encoding.

Figure 6 shows the RLE based compression [9]. Consider an input sequence “00000000” which is repeating

five times. This input will be compressed in normal bitmask based compression. Our approach of RLE technique

replaces such repetition using a bitmask of “00”. In this example, the four repetition will be encoded using RLE

and the first occurrence will be encoded as usual. By combining the dictionary bits and bitmask offset the number

of repetition is encoded. For this example, the dictionary index is “0” and the bitmask offset is “10”. Thus the

number of repetition will be “100” i.e., 4.

Fig. 6. Run length encoding based compression.

If the Run length encoding yield a shorter code length than the original bitmask encoding then the compressed

word are run length encoded. RLE is used only if r*l>l’ bits, where r represents the repetition of code with length

l and l’ represents the number of bits required to encode them using RLE. Thus the bits are saved using RLE

algorithm.

D. Decompression Engine

The original bitstream are regenerated by using the decompression engine to decode the compressed

configuration and to feed the uncompressed bitstream to the configuration unit in FPGA’s, the decompression

engine is used. A decompression engine is divided into two parts: the buffering circuitry and decoder. The

function of the buffering circuitry is to buffer and align codes fetch from the memory whereas decoder is used to

perform decompression operation to generate original bitstream. Thus, to get the original bitstream back

decompression engine is used.

V. EXPECTED RESULT AND DISCUSSION
The propose system is expected to give better compression ratio than the existing system. The system reduces

the memory requirement by balancing both compression and decompression and also decreases the

reconfiguration time in FPGA.

Reduction of Bitstream Transfer Time in FPGA

www.iosrjournals.org 86 | Page

VI. CONCLUDING REMARKS
The existing technique either provides good compression with slow decompression or fast decompression at

the cost of compression efficiency. In this paper, a new technique is proposed i.e., decode aware compression

technique which is design to produce the compressed bitstream in an efficient manner with fast decompression

performance. This technique helps us to reduce the transfer time in FPGA with improved compression ratio. The

combination of bitmask based compression and run length encoding provide an efficient compression bitstream

so that more configuration information can be stored using the same memory. In the future, we planned to

investigate more placement algorithm that are compatible with other compression technique such as Huffman

coding, Goulomb coding and arithmetic coding.

.

REFERENCES
[1] J. H. Pan, T. Mitra, and W. F. Wong, “Configuration bitstream compression for dynamically reconfigurable FPGAs,” in Proc. Int.

Conf. Comput.-Aided Des., 2004, pp. 766-773.
[2] S. Hauck and W. D. Wilson, “Runlength compression techniques for FPGA configurations,” in Proc. IEEE Symp. Field-Program.

Custom Comput. Mach., 1999, pp. 286-287.

[3] A. Dandalis and V. K. Prasanna, “Configuration compression for FPGA-based embedded systems,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 13, no. 12, pp. 1394-1398, Dec. 2005.

[4] D. Koch, C. Beckhoff, and J. Teich, “Bitstream decompression for high speed FPGA configuration from slow memories,” in Proc.

Int. Conf. Field-Program. Technol., 2007, pp. 161-168.
[5] S. Seong and P. Mishra, “Bitmask-based code compression for embedded systems,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 27, no. 4, pp. 673-685, Apr. 2008.

[6] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the Xilinx XC6200 FPGA,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 18, no. 8, pp. 1107-1113, Aug. 1999.

[7] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE, vol. 40, no. 9, pp. 1098-1101, 1952.

[8] A. Moffat, R. Neal, and I. H. Written, “Arithmetic coding revisited,” in Proc. Data Compression Conf., 1995, pp. 202-211.
[9] Xiaoke Qin, Chetan Muthry, and Prabhat Mishra, “Decoding Aware Compression of FPGA Bitstreams,” in Proc. Data Compression

Conf., 2011, pp. 411-419.

[10] C. S. Manikandababu and P. M. Sandeep “FPGA Bitstream Compression using Run length Encoding” IJECCT, Volume 3- Issue 2
(March 2013).

