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Abstract: This paper aims to present a mathematical morphological method to remove baseline wandering and 

background noise is removed from original ECG signal. Then the multipixel modulus accumulation is 

employed to act as a low-pass filter to enhance the QRS complex and improve the signal-to-noise ratio. The 

performance of the algorithm is evaluated with standard MIT-BIH arrhythmia database. Corresponding power 

and area efficient VLSI architecture is designed and implemented on a commercial nano-FPGA. High detection 

rate and high speed demonstrate the effectiveness of the proposed detector. 

Index Terms: Body sensor networks (BSNs), electrocardiogram (ECG) sensor, field-programmable gate array 

(FPGA), mathematical morphology, QRS detection, very-large-scale integration (VLSI) architecture 

 

I.     Introduction 
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for 

healthcare and the use of wearable/wireless devices and sensor networks for clinical applications. 

As one of the important physiological sensor nodes in BSN, wearable electrocardiogram (ECG) sensor is 

dedicated to measuring the rate and regularity of heartbeats as well as the size and position of the chambers, the 

presence of any damage to the heart and the effects of drugs or devices used to regulate 

the heart [1]. In ECG signal processing, all the extensive anal ysis need the information of QRS positions as a 

basic [2]–[4]. QRS detectors have been regarded as a mature topic until the BSN is introduced, where, 

unfortunately, the ECG sensor requires real-time, miniature form factors and long lifetimes that push the limits of 

ultra low power circuit and system design. 

Among the noises plaguing the ECG are the power-line interference, baseline drift, motion artifacts, electrode 

contact noise. 

Much efforts have been given to the frequency-based ECG fil tering algorithms for QRS detection, i.e., a 

band-pass filter with a center frequency in the range of 10–17 Hz. After passing the filter, the signal may be 

squared or averaged over a number of samples to obtain the place of QRS waves. But these techniques suffer 

from the fact that frequency bands of the noise/other com addition, in order to accurately detect the QRS,  

prior knowledge of frequency spectrums of different components in the recorded ECG signal is required through 

an additional training. 

 

II.    Normal Ecg Waveform Signal 
These are representations of of electrical activity created by depolarization and repolarization of the 

atria and ventricles.If the electrical current is flowing towards the lead then a positive deflection will be seen. If 

flowing away from lead then a negative deflection will be seen. Wave forms that are above and below the 

Isoelectric line are called biphasic. 

 

 
Fig 1: ECG waveform 

P Wave 

Electrical impulses originating in the SA node trigger atrial depolarization. The normal P wave is no 

more than 0.1 second in duration and 2.5mm high. The direction of electrical activity is from SA to AV node. 

The P wave is a representation of the time it takes for atrial depolarization. It is viewed normally as small and 

curved with a positive deflection. Seen at it's tallest on lead II. 
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T Wave 

Ventricular repolarization which follows ventricular depolarization, is represented by the T wave. Its 

shape is rounded and taller and wider than the P wave. It is also more sensitive to physiologic and hormonal 

changes in shape but usually presents as a positive deflection 5 -10mm in height. 

  

U Wave 

After T wave an ECG can sometimes show a U Wave. It is of the same deflection as T Wave and 

similar to shape to P Wave. The U Wave is thought to represent late repolarization of the Purkinje fibers in the 

Ventricles and is more often not shown on a rhythm strip. 

  

Intervals and Segments 

Interval refers to the length of a wave plus the isoelectric line that follows it. The length of an interval 

ends when another wave begins. They are named by using the letters of both waves on either side. Intervals 

contain waves. Segments refers to the baseline between the end of one wave and the beginning of the next wave. 

Segments are the lines between waves. See diagram below. 

.  

Fig .2: ECG waveform with intervals 

PR Interval 

Is the length along the baseline from the beginning of the P wave to the beginning of th QRS complex. 

This Is normally 0.12 to 2.0 seconds in duration. 

 

QT Interval 

Is the beginning of the QRS complex to the end of the T wave. In the presence of a U wave the measure 

should be from the beginning of the QRS complex to the end of the U wave. 

 

ST Segment 

Is the length between the end of the S wave of the QRS complex and the beginning of the T wave. It is 

electrically neutral. 

 

PR Segment 

It represents the delay in conduction from atrial depolarization to the beginning of ventricular 

depolarization. It is also electrically neutral. 

  

The Complex 

The ECG has only one complex which is the QRS. it can be described as when one wave follows 

another without intervals, segments or isoelectric lines between them. 

The QRS complex represents ventricular  depolarization. it consists of three waveforms. 

The normal complex begins with a downward deflection known as the Q wave, followed by an upward 

deflection called the R wave. The next downward deflection will be the S wave. All ventricular complexes are 

known as QRS complexes even if every wave is not present in all complexes. The normal QRS is 0.04 to 0.10 

seconds. You may have also been told .08 to .11 the importance is minimal. 

 
III.    Theory Of Mathematical Morphology 

Theoretical considerations 

The two principal morphological operations are dilation and erosion [1]. Dilation allows objects to 

expand, thus potentially filling in small holes and connecting disjoint objects. Erosion shrinks objects by etching 

away (eroding) their boundaries. These operations can be customized for an application by the proper selection 

of the structuring element, which determines exactly how the objects will be dilated or eroded. 

Notations 

Black pixel: in grayscale values for a 8 bits/pixel indexed image its value will be 0 
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 white pixel: in grayscale values for a 8 bits/pixel 

 

 The dilation 

The dilation process is performed by laying the structuring element B on the image A and sliding it across the 

image in a manner similar to convolution (will be presented in a next laboratory). The difference is in the 

operation performed. It is best described in a sequence of steps: 

  

1. If the origin of the structuring element coincides with a 'white' pixel in the image, there is no change; move 

to the next pixel.  

2. If the origin of the structuring element coincides with a 'black' in the image, make black all pixels from the 

image covered by the structuring element.  

Notation: 

A ⊕B 

indexed image its value will be 255 

 

 

 

 

 

 

 
 

Fig  3:Typical shapes of the structuring elements (B) 
 

The erosion 

The erosion process is similar to dilation, but we turn pixels to 'white', not 'black'. As before, slide the 

structuring element across the image and then follow these steps: 

 

1. If the origin of the structuring element coincides with a 'white' pixel in the image, there is no change; move 

to the next pixel.  

2. If the origin of the structuring element coincides with a 'black' pixel in the image, and at least one of the 

'black' pixels in the structuring element falls over a white pixel in the image, then change the 'black' pixel in 

the image (corresponding to the position on which the center of the structuring element falls) from „black‟ to a 

'white'.  

Notation: 

A ΘB 

 

Opening and closing 

These two basic operations, dilation and erosion, can be combined into more complex sequences. The 

most useful of these for morphological filtering are called opening and closing.Opening consists of an erosion 

followed by a dilation and can be used to eliminate all pixels in regions that are too small to contain the 

structuring element. In this case the structuring element is often called a probe, because it is probing the image 

looking for small objects to filter out of the image. See Fig 4, for the illustration of the opening process. 

 

Notation: 

A◦B = (AΘB)⊕B 

 

Closing consists of a dilation followed by erosion and can be used to fill in holes and small gaps. we see that 

the closing operation has the effect of filling in holes and closing gaps. Comparing the left and right images 

from  Fig. 5, we see that the order of operation is important. Closing and opening will generate different results 

even though both consist of erosion and dilation. 
 

Notation: 

A●B = (A⊕B)ΘB 
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Fig  4:Illustration of the opening process 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 5:Illustration of the closing process 
 

IV.     Proposed Qrs Detection Algorithem 
Detection of QRS complexes equals to the distinguishing of a group of consecutive positive and negative 

peaks. As mentioned above, originating from 2-D image processing, mathe-matical morphological technology 

extracts the effective information based on shapes in the image, not pixel intensities like conventional methods. A 

fundamental advantage of mathemati- cal morphology applied to signal processing is that it is intuitive since it 

works directly on the spatial domain: the structuring elements considered as the “basic bricks” play the same role 

frequencies do in the analysis of the frequently used frequency filters. Another advantage is that it leads to better 

reproducible results because of the strong mathematical foundation. The simplicity in terms of computation and 

hardware implementation is also one of its main advantages. 

 

 
Fig. 6: Block diagram of proposed algorithm 

 

The mathematical morphology was recently introduced into 1-D ECG processing [7]–[12], demonstrating the 

effectiveness of removal of impulsive noise and background normalization. However, existing [7]–[12] 

employed 8, 8, 8, 6, 4, and 2 high order opening/closing operators or their computational combinations to 

realize the QRS detectors, respectively. In order to further alleviate the implementation load and reduce the power 

consumption, a VLSI friendly QRS detector only based on the most fundamental dilation and erosion operator, as 

mentioned. 
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 As shown below, this algorithm will offer the lowestcost of hardware implementation in both power and size 

when compared to [7]–[12]. 

The diagram of the proposed algorithm is shown in Fig.6. The proposed morphology operator filtering 

plays the most critical role in the proposed algorithm which removes the noise and baseline drift and suppresses 

the P/T waves in ECG signal Then the multipixel modulus accumulation is used to enhance the QRS complex. 

Finally, the threshold is applied to decide the heart rate. The detailed discussions on each section in Fig. 6 are 

presented in the following subsections. The standard MIT/BIH ECG database [13] and our own wearable ECG 

data are used to demonstrate the superiority of proposed QRS detector 

An adaptive threshold is used as the decision function in connection with the proposed transformation for QRS 

detection. 

 
V.    Results 

The ECG signal obtained in the matlab and the processed ECG signal output is shown below. The 

pecentage of utiliztion of area in chip is also very less that we can see in modelsim. 

 

 
Fig 7: Reult of simulation in matlab 

 

 
Fig 8: Description of design summary in modelsim 
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