
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320-3331

PP 22-25

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 22 | Page

Low latency, area optimized, high throughput double preicision

pipeleined floating point multiplier using VHDL on FPGA

Tushar S. Muratkar
1
, Prof. Sudhir N.Shelke

2

1
ELECTRONICS, JDCOEM, NAGPUR INDIA
2
HOD EN/ETC, JDCOEM, NAGPUR INDIA

ABSTRACT: Floating-point numbers are widely adopted in many applications due their dynamic

representation capabilities. Floating-point representation is able to retain its resolution and accuracy compared

to fixed-point representations. Unfortunately, floating point operators require excessive area (or time) for

conventional implementations. The creation of floating point units under a collection of area, latency, and

throughput constraints is an important consideration for system designers. This paper presents the

implementation of a general purpose, scalable architecture used to synthesize floating point multipliers on

FPGAs. Although several implementations of floating point units targeted to FPGAs have been previously

reported, most of them are customized for specific applications. Multiplication is an important fundamental

function in arithmetic operations. It can be performed with the help of different multipliers using different

techniques. The objective of good multiplier is to provide a physically compact high speed and low power

consumption. To save significant power consumption of multiplier design, it is a good direction to reduce

number of operations. The main objective of this paper is to design “Simulation of IEEE 754 standard double

precision multiplier and check for the latency, area and troughput” using VHDL.

Keywords: Floating point multiplier, VHDL, FPGA

I. INTRODUCTION
 Field-programmable gate arrays (FPGAs) have long been attractive for accelerating fixed-point

applications. Early on, FPGAs could deliver tens of narrow, low latency fixed-point operations. As FPGAs

matured, the amount of parallelism to be exploited grew rapidly with FPGA size. This was a boon to many

application designers as it enabled them to capture more of the application. It also meant that the performance of

FPGAs was growing faster than that of CPUs [7]. Every computer has a floating point processor or a dedicated

accelerator that fulfils the requirements of precision using detailed floating point arithmetic. The main

applications of floating points today are in the field of medical imaging, biometrics, motion capture and audio

applications. Since multiplication dominates the execution time of most DSP algorithms, so there is a need of

high speed multiplier with more accuracy. Reducing the time delay and power consumption are very essential

requirements for many applications. Floating Point Numbers: The term floating point is derived from the fact

that there is no fixed number of digits before and after the decimal point, that is, the decimal point can float.

There are also representations in which the number of digits before and after the decimal point is set, called

fixed-point representations.

1.1Floating Point Arithmetic
The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most widely used standard

for floating-point computation, and is followed by many CPU and FPU implementations. The standard defines

formats for representing floating-point number (including ±zero and denormals) and special values (infinities

and NaNs) together with a set of floating-point operations that operate on these values. It also specifies four

rounding modes and five exceptions. IEEE 754 specifies four formats for representing floating-point values:

single precision (32-bit), double-precision (64-bit), single-extended precision (≥ 43-bit, not commonly used) and

double-extended precision (≥ 79-bit, usually implemented with 80 bits). Many languages specify that IEEE

formats and arithmetic be implemented, although sometimes it is optional. For example, the C programming

language, which pre-dated IEEE 754, now allows but does not require IEEE arithmetic (the C float typically is

used for IEEE single-precision and double uses IEEE double-precision).

1.2Double Precision Floating Point Numbers
 Thus, a total of 64 bits is needed for double-precision number representation. To achieve a bias

equal to 2
n-1

- 1 is added to the actual exponent in order to obtain the stored exponent. This equal 1023 for an 11-

bit exponent of the double precision format. The addition of bias allows the use of an exponent in the range from

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320-3331

PP 22-25

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 23 | Page

−1023 to +1024, corresponding to a range of 0.2047 for double precision number. The double precision format

offers a range from
2-1023

to 2
+1023

, which is equivalent to 10
-308

 to 10
+308

.

Sign: 1-bit wide and used to denote the sign of the Number i.e. 0 indicate positive number and 1 represent

negative number.

Exponent: 11-bit wide and signed exponent in excess- 1023 representation. Mantissa: 52-bit wide and fractional

component.

SIGN EXPONENT FRACTION

1 Bit 11 Bits 52 Bits
 Fig 1. Double precision Floating point format

1.3 Floating-Point Multiplication
Multiplication of two floating point normalized numbers is performed by multiplying the fractional

components, adding the exponents, and an exclusive or operation of the sign fields of both of the operands The

most complicated part is performing the integer-like multiplication on the fraction fields . Essentially the

multiplication is done in two steps, partial product generation and partial product addition. For double precision

operands (53-bit fraction fields), a total of 53 53bit partial products are generated. The general form of the

representation of floating point is:

 (-1) S * M * 2E

Where

S represents the sign bit, M represents the mantissa and E represents the exponent. Given two FP numbers n1

and n2, the product of both, denoted as n, can be expressed as:

n = n1 × n2

= (−1) S1 · p1 · 2
E1

 × (−1) S2 · p2 · 2
E2

=(−1)
S1+S2

 · (p1 · p2) · 2
E1+E2

In order to perform floating-point multiplication, a simple algorithm is realized:

Add the exponents and subtract 1023.

Multiply the mantissas and determine the sign of the result.

Normalize the resulting value, if necessary.

II. LITERATURE SURVEY
A few research work have been conducted to explain the concept of Floating Point Numbers. D.

Goldberg [1] explained the concept of Floating Point Numbers used to describe very small to very large

numbers with a varying level of precision. They are comprised of three fields, a sign, a fraction and an exponent

field. B. Parhami [2] proposed IEEE-754 standard defining several floating point number formats and the size of

the fields that comprise them. This Standard defines several rounding schemes, which include round to zero,

round to infinity, round to negative infinity, and round to nearest. Michael L. Overton [3] performed the

multiplication of two floating point normalized numbers by multiplying the fractional components, adding the

exponents, and an Exclusive OR operation of the sign fields of both of the operands. Cho, J. Hong et al. and N.

Besli et al.[4][5] multiplied double precision operands (53-bit fraction fields),in which a total of 53 53-bit partial

products are generated . To speed up this process, the two obvious solutions are to generate fewer partial

products and to sum them faster. Sumit Vaidya et al.[6] compared the different multipliers on the basis of

power, speed, delay and area to get the efficient multiplier. It can be concluded that array Multiplier requires

more power consumption and gives optimum number of components required.

FPGA
FPGA stands for Field Programmable Gate Arrays. It is a semiconductor device containing

programmable logic components and programmable interconnects. The programmable logic components can be

programmed to duplicate the functionality of basic logic gates such as AND, OR, XOR, NOT or more complex

combinational functions such as decoders or simple mathematical functions. In most FPGAs, these

programmable logic components (or logic blocks, in FPGA parlance) also include memory elements, which may

be simple flip flops or more complete blocks of memories. A hierarchy of programmable interconnects allows

the logic blocks of an FPGA to be interconnected as needed by the system designer, somewhat like a one-chip

programmable breadboard. These logic blocks and interconnects can be programmed after the manufacturing

process by the customer/designer (hence the term "field programmable", i.e. programmable in the field) so that

the FPGA can perform whatever logical function is needed. FPGAs are generally slower than their application

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320-3331

PP 22-25

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 24 | Page

specific integrated circuit (ASIC) counterparts, as they can't handle as complex a design, and draw more power.

However, they have several advantages such as a shorter time to market, ability to re-program in the field to fix

bugs, and lower non recurring engineering cost costs. Vendors can sell cheaper, less flexible versions of their

FPGAs which cannot be modified after the design is committed. The development of these designs is made on

regular FPGAs and then migrated into a fixed version that more resembles an ASIC. Complex programmable

logic devices, or CPLDs, are another alternative. FPGA architectures include dedicated blocks such as RAM,

hardwired multipliers, multiply-accumulate unit, high-speed clock management circuitry, and serial

transceivers, embedded hard processor cores such as PowerPC or ARM, and soft processor cores such as NIOS

or Microblaze.

III. METHODOLOGY
 There are number of techniques that can be used to perform multiplication. In general, the choice is

based upon factors such as latency, throughput, area, and design complexity and hence we use Array Multiplier

for implementing the multiplier.

4.1 Array Multiplier
 Array multiplier is an efficient layout of a combinational multiplier. Multiplication of two binary

number can be obtained with one micro-operation by using a combinational circuit that forms the product bit all

at once thus making it a fast way of multiplying two numbers since only delay is the time for the signals to

propagate through the gates that forms the multiplication array.

 Fig 3: 8*8 Array Multiplier

4.2 Pipelined floating point multiplier module

Fig 2.Pipelined Floating point multiplier

The details of each block is as given below

Check Zero Module

Here both operands are checked to determine whether they contain a zero. If one of them is zero , zero _flag is

set to zero. If none of them are zero , then inputs in IEEE 754 format is unpacked and assigned to the check sign

, add exponent, and multiply mantissa module.

Add Exponent Module

This module is activated if both the operands are non-zero. Two extra bits are also added to indicate the

overflow and underflow conditions. The resulting sum has a double bias, so the extra bias is subtracted from the

exponent sum. After this, Exp_Flag is set to 1.

Multiply Mantissa module

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320-3331

PP 22-25

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 25 | Page

Here zero _flag is checked first. If zero _flag is set to zero the no calculation and normalization is performed.

The Mantissa_Flag is set to zero. If both the operands are not zero then operation is done with multiplication

operator. Mantissa_Flag is set to 1, indicating that the operation is executed.

Check Sign Module

It determines the sign of the two operands .The resultant sign is positive if both the operands have same sign

else it is negative. XOR circuit is used

Normalize and concatenate all modules

It checks the overflow and underflow after adding the exponent .Overflow occurs if 8
th

 bit is 1, underflow

occurs if 9
th

 bit is 1. If Exp_Flag, Mant_Flag, Sign_Flag are set, then normalization is carried out. Lastly all are

concatenated and are normalized.

IV. CONCLUSION
Thus I had implemented the multiplier part using XILINX ISE 13.1. 1.XILINX ISE 13.1. The RTL

VIEW and Simulation waveforms is also shown below .

Fig 3.RTL view

Fig 4.Simulation Waveform

REFERENCES
[1] D. Goldberg, “What every computer scientist should know about floating-point arithmetic ,ACM Computing Surveys vol. 23-1 , pp. 5-
48 ,1991.

[2] B. Parhami, “Computer Arithmetic: Algorithms and Hardware Designs”,Oxford University Press, 2000.

[3] Michael L. Overton, “Numerical Computing with IEEE Floating Point Arithmetic, Published by Society for Industrial and Applied
Mathematics,2001.

[4] Cho, J. Hong, and G Choi, “54x54-bit Radix-4 Multiplier based on Modified Booth Algorithm,” 13th ACM Symp.VLSI, pp 233-236,

Apr. 2003.
[5] N. Besli, R. G. DeshMukh, “A 54*54-bit Multiplier with a new Redundant Booth’s Encoding,” IEEE Conf. Electrical and Computer

Engineering, vol. 2, pp 597-602, 12-15 May 2002.

[6] Sumit Vaidya and Deepak Dandekar,“ Delay-Power Performance comparison of multipliers in VLSI circuit design”, International
Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, pg 47-55, July 2010.

[7] . K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. In Proceedings of the ACM International

Symposium on Field Programmable Gate Arrays, Monterrey, CA, February 2004.
[8] P. Assady, “A New Multiplication Algo Using High-Speed Counters”, European Journal of Scientific Research ISSN 1450-216X,

Vol.26 No.3 ,pp.362-368, 2009.

 [9] Y. Wang, Y. Jiang, and E. Sha, “On Area Efficient Low Power Array Multipliers”,In the 8th IEEE International Conference on
Electronics, Circuits and Systems, pp 1429– 1432,2001.

[10] U. Kulisch, “Advanced Arithmetic for the Digital Computers”, Springer- Verlag, Vienna, 2002.

