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Abstract: This paper studies the state estimator for a class of neural networks with time delay. By 

constructing a suitable Lyapunov function and using the inequality technique, some results are 

obtained to ensure that the state estimator are consistent with the states of the estimated system in 

finite time and the time upper bound of fixed-time is estimated. Finally, a numerical simulation shows 

the effectiveness of the given results. 
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I. Introduction 
Recently, neural networks have received more and more attention because of their extensive 

applications in various fields such as image processing, computer vision, decision optimization [1]-[4], and so 

on. Neural networks have great ability to deal with complex nonlinear problems and find optimal solutions at 

high speed. In practice, owing to the limited speeds of signal processing and transmission between neurons, 

time-delay inevitably exists in neural networks. Time delay often can affect the stability of dynamic systems and 

leads to the decline of the performance index of these systems. Therefore, it is necessary to study the stability of 

delayed neural networks for the satisfactory performance requirement, and there exist some relevant literatures 

such as [5]-[10]. For example, [5] studied the property of input-to-state stability of the inertial memristor-based 

neural networks with impulsive effects. The authors investigated the finite-time stability of fractional-order 

complex valued neural networks with time delay in [6]. By employing Laplace transform and the properties of 

Mittag-Leffler function, a result on the exponent stability is developed to derive the finite-time stability 

conditions.  

It should be pointed out that, up to now, the research on the finite time stability has made a lot of 

achievements [11]-[13]. The finite time stability often depends on the initial conditions of the systems, which 

brings inconvenience to practical application. In order to make up for this deficiency, Polyakov proposed the 

concept of fixed-time stability in literature [14], and made a theoretical foundation for the fixed time stability of 

neural networks and provided some relevant theorems. Different from the finite time stability, fixed-time 

convergence can achieve transient performance faster and control accuracy higher. Thus, the problem of fixed-

time stability has been concerned and applied in many fields such as fixed-time fuzzy control of non-singular 

robot systems [15], distributed formation control for multiple hypersonic gliding vehicles [16], high-precision 

trajectory tracking control for manipulator systems [17]. [18] studied the fixed-time synchronization problem of 

discontinuous fuzzy inertial neural network with time-varying delay, and solved the discontinuity of the system 

by using generalized variable transformation and Filippov theory. [19] proposed a new fixed-time stability 

theory which provides a lower upper bound for the convergence time, and used these results to solve the 

synchronization problem of the memory neural networks.  

Motivated by the above discussion, we will deal with the problem of fixed-time state estimation for a 

class of neural networks with time delay in this paper. By constructing appropriate Lyapunov function and by 

the means of inequality technique, some sufficient conditions are established to ensure the existence of the 

desired estimators, and the gains of such estimators are given via solving a linear matrix inequality. 

The rest of this paper is organized as follows. In section 2, model description and preliminary results 

are presented. In section 3, the observer guaranteed its states being the same with the states of neural networks 

with time delay is derived. In section 4, a numerical example is provided to illustrate the effectiveness of our 

obtained results. Finally, this paper is ended with a conclusion in section 5. 

Throughout this paper, the following notations are used. 
nR and 

n mR 
, respectively, denote the n -

dimensional Euclidean space and the set of n m real matrices. For a given vector 
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1 2( , ,..., )T n

nx x x x R  ,
2

1

|| ||
n

i

i

x x


  denotes its norm. The notation X Y  (respectively, X Y ), 

where X  and Y are symmetric matrices, means that X Y  is a symmetric semi-definite matrix (respectively, 

positive definite matrix). 

 

II. Problem Formulation and Preliminaries 
Consider the following neural network with time-varying delay 

0 1( ) ( ) ( ( )) ( ( ( ))) ( )

( ) ( )

( ) ( ),  [ ,0],M

x t Ax t W f x t W f x t d t J w t

y t Cx t

x t t t d

      



   



                                     (1) 

where ( ) nx t R denotes the neuron state vector, ( ) my t R denotes the output,  1 2, , , nA diag a a a  ,

0( 1,2,..., )ia i n  ,
m nC R  , 

0

n nW R 
 
and 

1

n nW R   stand for some known interconnection weight 

matrices. 
1 2( , ,..., )T

nJ J J J  is a known vector, ( ) nw t R
 
denotes the disturbance and satisfies 

|| ( ) ||w t  , constant 0  is known. The initial condition ( ) :[ ,0] n

Mt d R    is a continuous function

， ( )d t  denotes the time delay and 

0 ( ) Md t d  , 0 ( ) 1d t    ,                                                         (2) 

where Md  and  are two known constants. ( ( )) : nf x t R R  is a continuous differential activation function 

and satisfies Lipschitz condition. For any vector 
1 2( , , , )T

nc c c c  , defined 
2 2 2 2

2 1 2|| || nc c c c     and 

1 1 2|| || | | | | | |nc c c c    . 

In this paper, the state estimator is as follows 

0 1

1

1 1

1

2
2 2( )

2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( ( ))) ( ( ) ( ))

ˆ ˆ         s ( ( ) ( )) || ( ) ( ) ||

ˆ( ( ) ( ))
ˆ ˆ         ( ( ( ) ( )) ( ( ) ( )) )

ˆ|| ( ) ( ) ||

ˆ ˆ( ) (

T

T
t

T

t d t

x t Ax t W f x t W f x t d t J D y t y t

C ign y t y t y t y t

C y t y t
y y y y d

y t y t

y t Cx t







     







       

   


  









)

ˆ( ) 0,  [ ,0],Mx t t d











  

                (3) 

where 
n mD R   is the gain matrix, 1  and 2  are the constants to be determined in the later, ( )sign   is the 

sign function. Especially, for vector 
1 2( , ,..., )T

nm m m m ，

1 2( ) ( ( ), ( ),..., ( ))T

nsign m sign m sign m sign m . 

Writing the state error as ˆ ˆ( ) ( ) ( ),   ( ( )) ( ( )) ( ( ))e t x t x t f e t f x t f x t    ， then one gets the 

following error system 
1

0 1 1 1

1

2
2 2( )

2

( ) ( ) ( ) ( ( )) ( ( ( ))) ( ) s ( ( )) || ( ) ||

( )
         ( ( ) ( ) )

|| ( ) ||

( ) ( ),  [ ,0].

T

T
t

T T

t d t

M

e t A DC e t W f e t W f e t d t w t C ign Ce t Ce t

C Ce t
e C Ce d

Ce t

e t t t d







   









        





   





      

(4) 

Remark 1. Compared with the fixed-time stability in [12] and [20], the neuron states in (1) does not obtain 

by measure. The state observer is constructed with the output signal ( )y t . 

In the follows, we give some necessary assumptions and lemmas. 

Assumption 1. The activation function ( ( ))f x t  satisfies 
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1 2
1 2

1 2

( ) ( )
0 (0) 0,  ,  1,2, ,i i

i i

f f
l f R i n

 
 

 


     


， ，              (5) 

where (1 )il i n   are known constants,
1 1 2 2( ( )) ( ( ( )), ( ( )), , ( ( ))) .T

n nf x t f x t f x t f x t 
 In fact, definite  1 2, , , nL diag l l l  , for any positive definite diagonal matrix 

 1 2, , , nZ diag z z z  , 0(1 )iz i n   , inequality  

( ( )) [ ( ) ( ( ))] 0,  ( )T nf e t Z Le t f e t e t R                                          (6) 

holds. 

Definition 1[20]. For any initial values (0)x  and ˆ(0)x ，if there exists a positive constant 0T   such 

that 

2lim || ( ) || 0
t T

e t


 , 2|| ( ) || 0,  e t t T   ,

 then error system (4) is said to be the fixed-time stability. 

Lemma 1[21].  If ( ) :V t R R  is a differentiable function，for given positive numbers 0 1   

and 0  , if 

( ) ( )V t V t  , 0t t , 0( ) 0V t  ,                         (7) 

then 

                      
1 1

0 0 0 1( ) ( ) (1 )( ),  [ , ]V t V t t t t t t          

and 1( ) 0,  V t t t  ，

1

0
1 0

( )

(1 )

V t
t t



 



 


. 

Lemma 2[22].  For any real number (1 )i R i n    , constants 0 2q  , 0 1p  , then the inequality  

1 1
2 2

1 1

( | | ) ( | | )
n n

q q

i i

i i

 
 

                                    (8) 

and 

 
1

1 1

( | | ) | |
n n

p p

i i

i i

 
 

                         (9) 

hold. 

The purpose of this paper is to design an appropriate state estimator (3) such that error system (4) is fixed-

time stability, so as to ensure that the state of observer (3) is consistent with system (1) in finite time. 

 

III. Main results 

Theorem 1.  If there exist positive definite diagonal matrix 
1

n nZ R   and
2

n nZ R  , scalars 

1 20,  0   , such that 

1 1 2 1 1 0 1 1

2 2

1

2

1
( ) ( ) 0

2

1
* (1 ) 0 0,

2

* * 0

* * *

T T T T

T T T

A DC A DC C C L Z W W

C C L Z

Z

Z

    

 

 
      
 
    
 
 


 
  

      (10) 

then system (4) is the fixed-time stability, and 

1

2 (0)

ˆ (1 )

V
T



 






, where *  is the symmetry elements on the main 

diagonal symmetry. 

Proof.  Construct the following Lyapunov function 

1 2
( )

( ) ( ) ( ) ( ) ( )
t

T T

t d t
V t e t e t e s C Ce s ds 


   . 
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Taking the derivative of ( )V t  on t , one yields 

1 2 2

1 0 1

1

1 1

1

2
2

( )

( ) 2 ( ) ( ) ( ) ( ) (1 ( )) ( ( )) ( ( ))

      2 ( ){ ( ) ( ) ( ( )) ( ( ( )))

         s ( ( )) || ( ) ||

         ( ( ) ( ) )

T T T T

T

t
T T

t d t

V t e t e t e t C Ce t d t e t d t C Ce t d t

e t A DC e t W f e t W f e t d t

C ign Ce t Ce t

C
e C Ce d





  





   











     

     

 

 

 

2

2

2 2

( )
}

|| ( ) ||

         ( ) ( ) (1 ) ( ( )) ( ( )).

T

T T T T

Ce t

Ce t

e t C Ce t e t d t C Ce t d t      

 

From (6), for any positive definite diagonal matrix 1Z  and 2Z , there are 

1( ( )) [ ( ) ( ( ))] 0Tf e t Z Le t f e t                       (11) 

and 

2( ( ( ))) [ ( ( )) ( ( ( )))] 0.Tf e t d t Z Le t d t f e t d t                (12) 

From lemma 2, one gets 

2 1|| ( ) || || ( ) ||Ce t Ce t . 

Noting that 
1

1 1

1

2 2
2

1

2

2 ( ) s ( ( )) || ( ) || 2(|| ( ) || )

                                                    2(|| ( ) || )

                                                    2( ( ) ( ))

     

T

T T

e t C ign Ce t Ce t Ce t

Ce t

e t C Ce t

 





 





   

 

 

1 1

2 2
1                                               2 ( ( ) ( ))Te t e t

 

 
 

 

                         (13) 

and 
1

2
1 2 2( )

2

1

2
1 2

( )

1

2
1 2

( )

( )
2 ( )( ( ) ( ) )

|| ( ) ||

( ) ( )
           2 ( ( ) ( ) )

( ) ( )

           2 ( ( ) ( ) ) .

T
t

T T

t d t

T
t

T T

Tt d t

t
T T

t d t

C Ce t
e t e C Ce d

Ce t

e t C Ce t
e C Ce d

e t C Ce t

e C Ce d







    

    

    







 









 

 







              (14) 

Where we use 
1( ) ( ) ( ) ( )T T Te t C Ce t e t e t  for any 0  . 

Define ( ) ( ( ), ( ( )), ( ( )), ( ( ( ))))T T T T Tt e t e t d t f e t f e t d t     and 

1

2
1

ˆ min{ , }


  


 , by (10) , we have 

1 1 1

2 2 2
1 1 2

( )

1 1

2 2
1 2

( )

1

2

( ) ( ) ( ) 2[ ( ( ) ( )) ( ( ) ( ) ) ]

ˆ      ( ) ( ) 2 [( ( ) ( )) ( ( ) ( ) ) ]

ˆ      2 [ ( )] .

t
T T T T

t d t

t
T T T T

t d t

V t t t e t e t e C Ce d

t t e t e t e C Ce d

V t

  

 



        

       



  



 





   

   

 







 

According to lemma 1, system (4) is the fixed-time stable and 

1

2 (0)

ˆ (1 )

V
T



 






. 

In system (1), if taking ( ) 0d t  , there is 

0( ) ( ) ( ( )) ( )

( ) ( ),  [ ,0].M

x t Ax t W f x t J w t

x t t t d

    


  


                                             (15) 
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For this system, the following conclusions can be obtained. 

Corollary 1. If there exist positive definite diagonal matrices 
1

n nZ R   and
2

n nZ R  , positive numbers 

1 0   and 2 0  , such that 

1 1 2 1 1 0

1

( ) ( )
0

*

T T T TA DC A DC C C L Z W

Z

         
 

 

,                   (16) 

then system 

1

0 1 1( ) ( ) ( ) ( ( )) ( ) s ( ( )) || ( ) ||

( ) ( ),  [ ,0]

T

M

e t A DC e t W f e t w t C ign Ce t Ce t

e t t t d





      


  


 

is the fixed-time stable. 

 

IV. A Simulation Example 
Consider the time delay neural networks (1) with the following parameters, where 



















200

030
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














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C , 
























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653

0W , 
























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
















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0200

0020

.

.

.

L , 



















70

30

20

.

.

.

J , 

   xtanhxf 5
, 

( ) (sin ,cos ,sin 2 )Tw t t t t
, 1d , 50. . 

According to Theorem 2 and using the LMI toolbox in MATLAB, the feasible solutions satisfying inequality 

(10) are obtained as follows: 

























627231134055390

113404559423950

553902395051315

...

...

...

D ，


















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1

.

.

.

Z ， 



















4796100
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0046211

2

.

.

.

Z ， 21  ， 362022 . . 

 

Setting the initial states as  T,,x 4320   and  T,,x̂ 3530  ，the state curve of system (1) is shown in 

Figure 1, the state curve of observer (3) is shown in Figure 2, the state curve of error system (4) is shown in 

Figure 3, respectively. These results show that observer (3) can be consistent with neural network (1) in fixed 

time. 
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Figure 1.  State curve of system (1) 

 

 
Figure 2.  State curve of observer (3) 
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Figure 3.  State curve of error system (4) 

 

V. Conclusions 

This paper investigates a state estimator for a class of neural networks with time delay. By constructing 

an appropriate Lyapunov function and using inequality techniques, some conditions have been obtained to 

ensure that the state estimator is consistent with the state of the estimated system in a fixed time, and the upper 

bound have been estimated. Finally, the effectiveness of the results has been proved by numerical simulation.  
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