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Abstract 
A novel method of model reduction was created for stable linear dynamic systems on a vast scale. The authors 

have tried to preserve time moments and prevailing modes. Through this reduction, the overall significant 

properties contained in the large-scale complete order model are translated into the lower order system, 

enabling the generalized pole clustering approach to be used to compute the approximate denominator. The 

factor division procedure is used to produce the approximate numerator. This leads to the creation of a lower 

order system. Comparison research is carried out to show its efficacy, to emphasize some of its key 

characteristics, and to achieve its correctness. The approximate model identified by the suggested method is 

compared with the reduced order models computed from the recently proposed methods and well-known model 

reduction schemes in two standard numerical instances. The design of the compensator employing the moment 

matching algorithm, and the simplified model is highlighted as well in the study. A classic numerical example 

from the literature is used to validate and illustrate the compensator design. 

Keywords: Moment Matching Algorithm, Controller, dominating modes, large-scale systems, model order 

reduction (MOR), and pole clustering. 
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I. Introduction 
These days, a variety of intricate, multidimensional systems are employed in societal, technological, 

and environmental activities. When a system's dimensions are so great that traditional research, modeling, 

control, design, and computation techniques are unable to produce acceptable results with practical 

computational efforts, the system is referred to as huge scale. Lower dimensions systems that are comparable to 

the large dimensional system are needed to solve such an issue. For engineers, then, lower order systems are 

highly preferred in the analysis, synthesis, and simulation of large-scale systems due to their ability to reduce 

costs, design time, and simplify implementation. The technique of distinguishing a lower dimensional system 

from a higher dimensional system is known as model order reduction, or MOR. The key components of the 

prior system are still present in the lower dimensional system in MOR. In several scientific and technical 

disciplines, the MOR is often used to simplify higher dimensional real time systems [7, 10, 23, 28, 38]. The 

model reduction was first proposed in the frequency domain large-scale system simulation to lower the order of 

the transfer function of linear dynamic systems [6]. In this frequency range, the stability equation [4, 5], the 

Padé approximation [42], the Routh approximation [19, 20], and the Routh stability [60]. These methods have 

certain drawbacks, such as the possibility that the Padé approximation will result in an unstable lower order 

system even while the underlying system is stable [32]. These methods have certain drawbacks, such as the 

possibility that the Padé approximation will result in an unstable lower order system even while the underlying 

system is stable [32]. According to [20], the Routh approximation method is unable to minimize the order of the 

non-strictly transfer function. According to [44], failure of the Routh-Hurwitz method of reduction the Routh 

stability approach. The Routh approximation approach is not able to minimize the order of the non-strictly 

transfer function, according to [20]. It is found that [40], the Routh stability technique does not preserve the 

dominant poles in non-minimum phase systems. For non-minimum phase systems, large-scale systems cannot 

be made simpler using the stability equation technique [40]. [17], [32-36], [1]. To simplify high dimensional big 

scale systems in the temporal domain, several model diminution strategies are put forth [2, 3, 15, 40, 55]. Of 

them, balanced realization is the most often applied technique for linear time-invariant system simplification on 

a large scale. It was first suggested for linear time invariant model reduction. The observability and 

controllability Grampian’s are utilized to determine less observable and controllable states. This strategy 

truncates the least controllable and observable states to determine the reduced model. This approach 

occasionally results in a smaller model whose steady state response does not match the response of the whole 

model. Several MOR techniques are suggested to address this issue [13, 11, 35]. One of the most popular MOR 

techniques for the simplification of large-scale dimensions linear systems among these approaches is the pole 
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clustering technique [50]. This method clusters the complicated original system's poles (zeros), then uses the 

centers of those clusters to compute. By preserving the dominant poles of the original system in the reduced 

model, this strategy guarantees the stability of the reduced model if the original system is stable. Nevertheless, 

there are a few drawbacks to this approach as well. For example, additional simulation time and mathematical 

calculations are required to determine the tuning factor and gain adjustment factor, which are necessary to 

match the temporal responses of the higher order original system and lower order systems appropriately. 

Several model reduction techniques based on the pole clustering technique have been developed to overcome 

these restrictions [46, 48, 53]. This work proposes a new, straightforward, and programmable model reduction 

technique that avoids the pole clustering method's drawbacks. This approach uses the factor division method to 

derive the numerator polynomial and the generalized pole clustering method to compute the denominator of the 

simplified model [33, 47]. In the reduced order model, this technique guarantees the retention of the original 

system's stability and initial time moments. 

 

II. Problem Statement 
An 𝑛𝑡ℎ-order transfer function of higher order SISO linear time invariant (LTI) system is considered as 

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
 =

𝑑0+𝑑1𝑠+⋯+𝑑𝑛−1𝑠𝑛−1

𝑒0+𝑒1𝑠+𝑒2𝑠2+⋯+𝑒𝑛𝑠𝑛      (1) 

The objective of the paper is to compute the unknown parameters of 𝑟𝑡ℎ-order (𝑟 < 𝑛) reduced model 

and its nature and performance are approximately the same as the original system and it is defined as the 

following transfer function 

𝑅𝑟(𝑠) =
𝑄𝑟(𝑠)

𝑃𝑟(𝑠)
=

𝑞0+𝑞1𝑠+𝑞2𝑠2+⋯+𝑞𝑟−1𝑠𝑟−1

𝑝0+𝑝1𝑠+𝑝2𝑠2+⋯+𝑝𝑟−1𝑠𝑟−1+𝑝𝑟𝑠𝑟   (2) 

The transfer matrix of multi-input multi output (MIMO) system linear time-invariant (LTI) system is 

defined as below 

[𝐺(𝑠)] =
1

𝐷(𝑠)
[

𝑎11(𝑠) 𝑎12(𝑠) ⋯ 𝑎1𝑢(𝑠)

𝑎21(𝑠) 𝑎22(𝑠) ⋯ 𝑎2𝑢(𝑠)
⋮ ⋮ ⋮ ⋮

𝑎𝑣1(𝑠) 𝑎𝑣2(𝑠) ⋯ 𝑎𝑣𝑢(𝑠)

]            (3) 

= [𝑔𝑖𝑗(𝑠)]𝑣×𝑢                                                   (4) 

where 𝑖 = 1, 2, 3, … , 𝑣;  𝑗 = 1, 2, 3, … , 𝑢, and u and v are the inputs and outputs of original system 

respectively. The  𝑔𝑖𝑗(𝑠) can be written as 

𝑔𝑖𝑗(𝑠) =
𝑎𝑖𝑗(𝑠)

𝐷(𝑠)
                                               (5) 

 

This contribution's goal is to compute the original system's estimated model while maintaining all the 

system's key characteristics in the comparable model. The approximated model's transfer matrix is specified as 

[𝑅𝑟(𝑠)]  =
1

𝑃𝑟(𝑠)
[

𝑏11(𝑠) 𝑏12(𝑠) ⋯ 𝑏1𝑢(𝑠)

𝑏21(𝑠) 𝑏22(𝑠) ⋯ 𝑏2𝑢(𝑠)
⋮ ⋮ ⋮ ⋮

𝑏𝑣1(𝑠) 𝑏𝑣2(𝑠) ⋯ 𝑏𝑣𝑢(𝑠)

]         (6) 

= [𝑟𝑖𝑗(𝑠)]𝑣×𝑢                                                  (7) 

where 𝑖 = 1, 2, 3, … , 𝑣;  𝑗 = 1, 2, 3, … , 𝑢. Hence 𝑟𝑖𝑗(𝑠) can be defined as 

𝑟𝑖𝑗(𝑠) =
𝑏𝑖𝑗(𝑠)

𝑃𝑟(𝑠)
                                              (8) 

The elements that make up the reduced transfer function matrix rij (s) and the real transfer function 

matrix gij(s)) are different. For the same kind of input, the predicted reduced model responds about the same as 

the original system. 

 

Procedures for Proposed Method 

The two primary processes for determining the lower order system in the suggested technique are as 

follows. By identifying the centers of these clusters and the clusters of poles of the higher order original system, 

the denominator polynomial of the approximated system is obtained. The steps taken to create the clusters and 

cluster centers are listed below. 

 

Determination of denominator polynomial 

Any dynamic system's temporal and frequency responses are contingent upon the quantity, location, 

and density (the number of poles inside a given region) of poles. Most MOR approaches directly ignore the 

poles of higher order systems that are distant from the imaginary axis [36, 37, 39, 59]. In the suggested method, 

the dominant poles are calculated by adding the poles that are farthest from the s-plane origin to determine the 
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lower order system. The poles of the higher order system are arranged into 'r' numbers of groups in the r th order 

reduced system. A group's pole shows its influence on the cluster center of that group. Based on their 

dominance - that is, their relative significant distance from the s-plane origin, the original systems' poles are 

arranged in clusters.  The principles listed below are used to cluster the poles. 

1) The clustering of real and complex poles is different. 

2) Separate clusters ought to be set up for the poles located in the left and right halves of the s-plane. 

3) The lower order model preserves the poles located at the origin of the s-plane and along the vertical axis. 

 

Clustering of real poles 

Examine the following transfer function for the original system of equation (1) in its pole-zero form. 

𝐺𝑝(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
 

Where, 

𝑁(𝑠) = (𝑠 + 𝑧1)(𝑠 + 𝑧2) … (𝑠 + 𝑧𝑟−1)(𝑠 + 𝑧𝑟)(𝑠 + 𝑧𝑟+1) … (𝑠 + 𝑧2𝑟−1)(𝑠 + 𝑧2𝑟)(𝑠 + 𝑧2𝑟+1). . . (𝑠 + 𝑧𝑛−1)        

(9) 

and 

𝐷(𝑠) = (𝑠 + 𝑝1)(𝑠 + 𝑝2) … (𝑠 + 𝑝𝑟−1)(𝑠 + 𝑝𝑟)(𝑠 + 𝑝𝑟+1) … (𝑠 + 𝑝2𝑟−1)(𝑠 + 𝑝2𝑟)(𝑠 + 𝑝2𝑟+1). . . (𝑠 + 𝑝𝑛)         

(10) 

Considering that the reduced system has an order of r (r<n), there are r number of clusters of the poles in the 

rth order reduced system. arranging the poles in the left half of the s-plane in increasing magnitude order as 

Pole ∶ −𝑝1, −𝑝2, … , −𝑝𝑖 , . . . , − 𝑝𝑛     ∀   |𝑝𝑖| < |𝑝𝑖+1|       (11) 

 

The first cluster contains the first pole, and the second cluster contains the second pole. The technique 

is repeated up to the last pole. In a similar manner, the rth pole is placed in the rth cluster, the (r+1)th pole is 

placed in the first cluster, the (r+2)th pole is placed in the second cluster, and the (2r)th pole is placed in the rth 

cluster. Upon identifying every pole within each group, the cluster centers are acquired using the subsequent 

formula. 

𝑐1 = − {([
1

|𝑝1|𝑋] + [
1

|𝑝𝑟+1|𝑋] + [
1

|𝑝2𝑟+1|𝑋] + ⋯ [
1

|𝑝𝑘|𝑋]) 𝑘⁄ }
−(1 𝑋⁄ )

      (12) 

𝑐2 = − {([
1

|𝑝2|𝑋] + [
1

|𝑝𝑟+2|𝑋] + [
1

|𝑝2𝑟+2|𝑋] + ⋯ [
1

|𝑝𝑙|𝑋]) 𝑙⁄ }
−(1 𝑋⁄ )

       (13) 

…            …              … …       … 

𝑐𝑟 = − {([
1

|𝑝𝑟|𝑋] + [
1

|𝑝2𝑟|𝑋] + [
1

|𝑝3𝑟|𝑋] + ⋯ [
1

|𝑝𝑚|𝑋]) 𝑚⁄ }
−(1 𝑋⁄ )

         (14) 

 

where X is the order of the cluster roots and c1, c2, ….., cr are the cluster centers of the poles. 

Depending on the precision of the lower order system, the value of X can be any natural number. Additionally, 

k, l, and m represent the number of poles located in clusters 1, 2, and r, respectively. Depending on the poles of 

the higher order systems, the values of these variables may be the same or differ. The denominator of the lower 

order system is determined as follows the cluster centers have been established. 

𝑃𝑟(𝑠) = (𝑠 − 𝑐1𝑝)(𝑠 − 𝑐2𝑝) … (𝑠 − 𝑐𝑟𝑝)                        (15) 

The cluster centers in equations (12–14) rely on the poles that are closest to the s-plane origin for a 

given value of X. As the value of X climbed from more than one, the cluster center moved closer to the 

dominant pole of the cluster. Therefore, it can be said that the cluster center is dependent on the cluster's 

dominant pole and that its magnitude is roughly closer to the dominant pole. It is also evident from equations 

(12–14) that the suggested clustering approach becomes the pole clustering method as defined by [50] when X 

equals to 1. 

 

Clustering of complex poles 

The nth order large scale system with only complex poles has the following denominator polynomial. 

𝐷(𝑠) = (𝑠 + 𝑎1𝑝 ± 𝑗𝑏1𝑝)(𝑠 + 𝑎2𝑝 ± 𝑗𝑏2𝑝). . . (𝑠 + 𝑎𝑟𝑝 2⁄ ± 𝑗𝑏𝑟𝑝 2⁄ ). . . (𝑠 + 𝑎𝑛𝑝 2⁄ ± 𝑗𝑏𝑛𝑝 2⁄ )                    (16) 

A pair of complicated pole groups (r⁄2) is constructed for the rth order reduced system. Like how real 

poles are arranged in clusters, the complex poles located in the left half of the s-plane are arranged in ascending 

order and placed in (r/2) pairs of clusters. These clusters' cluster centers are 

 

𝐴1𝑝 ± 𝑗𝐵1𝑝 = − {([
1

|𝑎1𝑝|
𝑋] + [

1

|𝑎(𝑟+1)𝑝|
𝑋] + [

1

|𝑎(2𝑟+1𝑝)|
𝑋] + ⋯ + [

1

|𝑎𝑘𝑝|
𝑋]) 𝑘⁄ }

−(1 𝑋⁄ )

±
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{([
1

|𝑏1𝑝|
𝑋] + [

1

|𝑏(𝑟+1)𝑝|
𝑋] + [

1

|𝑏(2𝑟+1)𝑝|
𝑋] + ⋯ + [

1

|𝑏𝑘𝑝|
𝑋]) 𝑘⁄ }

−(1 𝑋⁄ )

     (17) 

 𝐴2𝑝 ± 𝑗𝐵2𝑝 = − {([
1

|𝑎2𝑝|
𝑋] + [

1

|𝑎(𝑟+2)𝑝|
𝑋] + [

1

|𝑎(2𝑟+2)𝑝|
𝑋] + ⋯ + [

1

|𝑎𝑙𝑝|
𝑋]) 𝑙⁄ }

−(1 𝑋⁄ )

±

  {([
1

|𝑏2𝑝|
𝑋] + [

1

|𝑏(𝑟+2)𝑝|
𝑋] + [

1

|𝑏(2𝑟+2)𝑝|
𝑋] + ⋯ + [

1

|𝑏𝑙𝑝|
𝑋]) 𝑙⁄ }

−(1 𝑋⁄ )

(18) 

….                ….                          … 

𝐴𝑟𝑝 2⁄ ± 𝑗𝐵𝑟𝑝 2⁄ = − {([
1

|𝑎𝑟𝑝 2⁄ |
𝑋] + [

1

|𝑎𝑟𝑝|
𝑋] + [

1

|𝑎(3𝑟 2)𝑝⁄ |
𝑋] + ⋯ + [

1

|𝑎𝑚𝑝|
𝑋]) 𝑚⁄ }

−(1 𝑋⁄ )

±

{([
1

|𝑏𝑟𝑝 2⁄ |
𝑋] + [

1

|𝑏𝑟𝑝|
𝑋] + [

1

|𝑏(3𝑟 2)𝑝⁄ |
𝑋] + ⋯ + [

1

|𝑏𝑚𝑝|
𝑋]) 𝑚⁄ }

−(1 𝑋⁄ )

(19) 

 

where k, l, and m are the numbers of complex poles placed in cluster-1, cluster-2, and cluster-r, 

respectively; X is the order of the clusters' root; and (Arp/2+jBrp/2) are the cluster centers of the complex poles. 

Preferably, the value of X is more than one, and it also relies on how accurate the lower order system is 

supposed to be. Following the cluster centers' computation, the lower order system's denominator is 

𝑃𝑟(𝑠) = (𝑠 − 𝐴1𝑝 ± 𝑗𝐵1𝑝)(𝑠 − 𝐴2𝑝 ± 𝑗𝐵2𝑝) … (𝑠 − 𝐴𝑟𝑝 2⁄ ± 𝑗𝐵𝑟𝑝 2⁄ )                             (20) 

 

Clustering of real and complex poles 

The method described in the preceding technique is used to compute the cluster centers for the real and 

complex poles independently. The order of the lower order system determines the number of clusters for both 

real and complex poles. Assuming α cluster centers for real poles and β cluster centers for complex poles in the 

rth order lower order model, the reduced order system's denominator polynomial is 

𝑃𝑟(𝑠) = ∏ (𝑠 − 𝑐𝑖𝑝)
𝑥,𝑦 2⁄
𝑖=1,𝑗=𝑥+1 (𝑠 − 𝐴𝑗𝑝 ± 𝑗𝐵𝑗𝑝)     |   𝛼 + 𝛽 = 𝑟                             (21) 

 

Obtaining the lower order system's numerator polynomial 

The factor division approach is used to find the numerator polynomial of the reduced system [21, 35, 

47]. Using this method, first compare the higher order actual system of equation (1)'s transfer function with that 

of the lower order system of equation (2), as shown below. 

𝑄𝑟(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
× 𝑃𝑟(𝑠) 

=
𝑎0+𝑎1𝑠+𝑎2𝑠2+⋯+𝑎𝑟−1𝑠𝑟−1+⋯+𝑎𝑛+𝑟−1𝑠𝑛+𝑟−1

𝑒0+𝑒1𝑠+𝑒2𝑠2+⋯+𝑒𝑛−1𝑠𝑛−1+𝑒𝑛𝑠𝑛                        (22) 

The numerator polynomial 𝑄𝑟(𝑠) is a power series of (
𝑁(𝑠)

𝐷(𝑠)
× 𝑃𝑟(𝑠)) about 𝑠 = 0 and it can be easily 

calculated by using the moment matching procedure discussed by [19]. This algorithm ensures the retention of 

initial “r” time moments of the higher order system in the lower order system, and it is defined as [19, 26, 27, 

47]. 

𝑞0 =
𝑎0

𝑒0

   {
𝑎0     𝑎1      𝑎2    …   𝑎𝑟−1

𝑒0      𝑒1      𝑒2   …   𝑒𝑟−1
 

𝑞1 =
𝑘0

𝑒0

     {
𝑘0      𝑘1      𝑘2    …   𝑘𝑟−2

𝑒0      𝑒1      𝑒2    …   𝑒𝑟−2
 

𝑞2 =
𝑙0

𝑒0

    {
𝑙0      𝑙1      𝑙2    …   𝑙𝑟−3

𝑒0      𝑒1      𝑒2    …   𝑒𝑟−3
 

⋮                          (23) 

𝑞𝑟−2 =
𝑢0

𝑒0

    {
𝑢0   𝑢1  
𝑒0   𝑒1   

 

                                                          𝑞𝑟−1 =
𝑣0

𝑒0

     {
𝑣0    
𝑒0      

where 

𝑘𝑖 = 𝑎𝑖+1 − 𝑞0𝑒𝑖+1,  𝑖 = 0, 1, … , 𝑟 − 2, 

𝑙𝑖 = 𝑘𝑖+1 − 𝑞1𝑒𝑖+1,  𝑖 = 0, 1, … , 𝑟 − 3 

⋮ 
𝑣0 = 𝑢1 − 𝑞𝑟−2𝑒1. 
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The numerator coefficients qi (i=0, 1, 2, r-1) are calculated by using equation (23). Therefore, it 

guarantees the preservation of initial "r" time moments of the large-scale model in the rth order reduced model. 

The numerator polynomial of the reduced order system is commutated by using the factor division method 

discussed in [19, 21, 27, 33, 47]. 

 

III. Method For Design Of Compensator 
The controllers design and simulation of the higher order systems is a complicated task. As the system 

order increases, the cost and complexity of the controller design increased. This difficulty can be circumvented 

if a “good” lower order model is obtainable for the higher order model and controller design is carried out by 

using the lower order model. In the case of a higher dimensional dynamic system, huge numbers of sensors are 

needed for sensing the state variables of large-scale systems for the feedback controller’s design. Due to this, 

series controllers are preferable over feedback controllers. 

Based on the provided real-time system specification, a reference system M(s) is constructed to yield 

the expected performance so that the reference model's response roughly matches the closed-loop operation of 

the controlled system with unity feedback. According to [29, 54], the specific algorithm for deriving the 

reference system from the provided specification is detailed in. Assume that the compensator's transfer function, 

which provides the necessary closed-loop performance, is given as 

𝐺𝑐(𝑠) =
𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
          (24) 

To design the controller by using a lower order model, the open loop reference system (𝑀̃(𝑠)) is 

obtained from the given (or computed from the given specification) closed loop reference model (𝑀(𝑠)) 

𝑀̃(𝑠) =
𝑀(𝑠)

1−𝑀(𝑠)
          (25) 

The response of the open loop-controlled model is compared to that of the open loop reference system 

to determine the unknown controller parameters. 

𝐺𝑐(𝑠)𝐺(𝑠) = 𝑀̃(𝑠)     (26) 

𝐺𝑐(𝑠) =
𝑀̃(𝑠)

𝐺(𝑠)
=

∑ 𝑒𝑖𝑠𝑖2
𝑖=0

𝑠
         (27) 

The power series expansion coefficients about s=0 is denoted by ei (i=0, 1, 2), which are derived using 

the moment generating technique described by [19]. G(s) represents the transfer function of the original plant, 

and it can be swapped out with a well-approximated reduced order system to cut down on simulation time and 

mathematical calculations during controller design. Equations (24) and (27) can be compared to determine the 

unknown controller parameters. 
𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
=

𝑒0+𝑒1𝑠+𝑒2𝑠2

𝑠
                 (28) 

By solving equation (28), the controller with the necessary structure can be obtained. Once the 

controller settings have been acquired, the closed loop transfer function can be acquired as 

𝐺𝑐𝑙(𝑠) =
𝐺𝑐(𝑠)𝐺(𝑠)

1+𝐺𝑐(𝑠)𝐺(𝑠)
              (29) 

 

Numerical experiments 

In order to compare the effectiveness of different model reduction techniques, the integral square error 

(ISE), relative integral square error (RISE), integral absolute error (IAE), and integral time weighted absolute 

error (ITAE) are defined as the following error indices that are computed between the transient portions of the 

actual and reduced models (Prajapati and Prasad, 2018d; Sikander and Prasad, 2015; Tiwari and Kaur, 2018). 

{
𝐼𝑆𝐸 = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]2𝑑𝑡                            

∞

0

𝑅𝐼𝑆𝐸 = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]2𝑑𝑡
∞

0
/ ∫ [𝑦̂(𝑡)]2𝑑𝑡

∞

0

          (30) 

{
𝐼𝐴𝐸 = ∫ |𝑦(𝑡) − 𝑦𝑟(𝑡)|𝑑𝑡                            

∞

0

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑦(𝑡) − 𝑦𝑟(𝑡)|𝑑𝑡  
∞

0
                        

              (31) 

Where y  ̂(t) is the original system's impulse response and y(t) and yr(t) are the unit step responses of 

the higher order and reduced order systems, respectively. These error indices are computed for several reduced 

systems that are obtained using the suggested technique in addition to other well-known MOR approaches that 

may be found in the literature. 

 

Example 1: In this SISO sixth-order system, the proposed MOR method is illustrated, and this system has been 

recently considered by different researchers (Jamshidi, 1983; Soloklo and Farsangi, 2015; Tiwari and Kaur, 

2018). 

𝐺(𝑠) =
2𝑠5+3𝑠4+16𝑠3+20𝑠2+8𝑠+1

2𝑠6+33.6𝑠5+155.94𝑠4+209.46𝑠3+102.42𝑠2+18.3𝑠+1
    (32) 
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𝐺(𝑠) can be written in terms of time moments by Taylor series expansion about 𝑠 = 0 as 

𝐺(𝑠) = 1 − 10.3𝑠 + 106.1𝑠2 − 1079.6𝑠3 + ⋯                             (33) 

To obtain a second order reduced order system, poles of the original system are grouped into two 

clusters. The original system has six poles as below: 

−0.1, − 0.2, − 0.5, − 1, − 5, − 10 
These poles are placed into two clusters based on their dominancy 

Cluster-1 has poles ∶   −0.1, − 0.5, − 5 
Cluster-2 has poles∶   −0.2, − 1, −10. 
The cluster centers of these groups are obtained by using the formula discussed in (12)– (14) as 

𝑐1𝑝 = − {([
1

(0.1)𝑋
] + [

1

(0.5)𝑋
] + [

1

(5)𝑋
]) 3⁄ }

−(1 𝑋⁄ )

 

𝑐2𝑝 = − {([
1

(0.2)𝑋
] + [

1

(1)𝑋
] + [

1

(10)𝑋
]) 3⁄ }

−(1 𝑋⁄ )

 

By using the above cluster centers, denominator of the second order reduced system is obtained as 

𝐷2(𝑠) = (𝑠 − 𝑐1𝑝)(𝑠 − 𝑐2𝑝)                                                                         (34) 

By using the different values of 𝑋, different denominator polynomials of lower order system will be 

obtained after that the numerator polynomial determined by using the factor division scheme. The lower order 

system calculated by the proposed method with 𝑋 =  50, is 

𝑅2(𝑠) =
0.0913𝑠+0.0209

𝑠2+0.3066𝑠+0.0209
                                                                                        (35) 

= 1 − 10.3𝑠 + 103.3𝑠2 − 1022.1𝑠3 + ⋯                                                   (36) 

The derived reduced order model from equations (33) and (36) maintains the full order system's first 

"r" (r=2, or the order of the reduced order system) time moments. As a result, the suggested method maintains 

the factor division technique's basic function. 

The original and lower order model's time responses are shown in Figure 1. The given technique yields 

a model whose reaction is closely matched to that of the entire order system. The frequency responses of the 

reduced and original models are displayed in Figure 2, and the suggested method's response is almost the same 

as that of several common model reduction techniques [9, 22, 60]. Table 1 presents the quantitative comparison 

between the original system and second order reduced models in terms of different performance error indices. It 

is also clearly demonstrated that the performance error indices obtained by the suggested approach are least as 

compared to the well-known model reduction methods. It is also evident, though, that the suggested method 

does not provide the least error indices for X=10, but it does for X=50. Therefore, when X is increased, the 

error indices will decrease, and the resultant model's time response will converge toward the original system's 

response. 

 

Table 1. Quantitative analysis of various MOR Techniques with respect to ISE, RISE, IAE and ITAE. 
System reduction method Reduced order model ISE RISE IAE ITAE 

Kumar and Tiwari (2012), Vishwakarma and Prasad 

(2008) 

−0.5076𝑠 + 0.1209

𝑠2 + 0.7377𝑠 + 0.1209
 

12.653 8.551

7 

52.016

8 

689.369 

Kumar, Nagar and Tiwari (2013) 1512𝑠 + 360

2458𝑠2 + 2196𝑠 + 360
 

12.063

6 

8.153

3 

49.909

0 

657.914

0 

Gutman (1982) 576𝑠 + 360

2458𝑠2 + 2196𝑠 + 360
 

11.401

2 

7.705

7 

58.057

1 

853.937

2 

Gu (2005) 0.0492𝑠 + 0.0896

𝑠2 + 0.9811𝑠 + 0.09526
 

2.4924 1.684

5 

47.828

3 

2741.6 

Moore (1981), Safonov and Chiang (1989) 0.0961𝑠 + 0.0042

𝑠2 + 0.1342𝑠 + 0.0046
 

2.3754 1.605

4 

40.205

2 

2777.9 

Komarasamy, Albhonso and Gurusamy (2011), 

Sikander and Prasad (2017), Vishwakarma (2011), 

0.0105𝑠 + 0.0404

𝑠2 + 0.4266𝑠 + 0.0404
 

1.0487 0.708

7 

17.567

7 

305.009

6 

Shamash (1975), Singh, Prasad and Gupta (2006) 5.6402𝑠 + 1

87.3752𝑠2 + 15.9402𝑠 + 1
 

0.7712 0.521

2 

18.139

2 

429.481

7 

Krishnamurthy and Seshadri (1978) 7.1064𝑠 + 1

87.3752𝑠2 + 15.9402𝑠 + 1
 

0.6967 0.470

8 

18.680

0 

543.673

1 

Huang (2013) 0.0961𝑠 + 0.0046

𝑠2 + 0.1342𝑠 + 0.0046
 

0.6091 0.411

6 

20.400

7 

772.309

6 

Shamash (1981) 8𝑠 + 1

102.42𝑠2 + 18.3𝑠 + 1
 

0.2871 0.194

1 

11.276

8 

284.526

6 

Tiwari and Kaur (2018) −0.4809𝑠 + 0.6396

𝑠2 + 6.1070𝑠 + 0.6393
 

0.2700 0.182

5 

8.0013 136.847

1 

Chen and Chang (1979), Chen, Chang and Han (1980), 

Sikander and Prasad (2015) 

8𝑠 + 1

101.0101𝑠2 + 18.3𝑠 + 1
 

0.2506 0.169

4 

10.482

5 

263.263

2 

Prajapati and Prasad (2018d) 0.0868𝑠 + 0.0046

𝑠2 + 0.1342𝑠 + 0.0046
 

0.1487 0.100
5 

9.1923 302.715
2 
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Proposed method with X=10 0.0783𝑠 + 0.0249

𝑠2 + 0.3348𝑠 + 0.0249
 

0.1023 0.069

1 

5.5975 105.654

2 

Prajapati and Prasad (2018b, 2018c), Prasad (200) 0.0880𝑠 + 0.011

𝑠2 + 0.2012𝑠 + 0.011
 

0.0659 0.044

5 

5.5113 156.925

9 

Hutton and Friedland (1975) 0.0879𝑠 + 0.011

𝑠2 + 0.2012𝑠 + 0.011
 

0.0626 0.042

3 

4.8481 114.097 

Proposed method with  X=50 0.0913𝑠 + 0.0209

𝑠2 + 0.3066𝑠 + 0.0209
 

0.0210 0.014

2 

2.2612 37.7357 

 

 
Figure 1: Comparative analysis of time responses between complete order and lower order systems 

 

 
Figure 2. Comparison of frequency responses between complete order and lower order models 

 

Example 2: Now consider a MIMO sixth-order system which has been considered by several researchers 

(Prajapati and Prasad, 2018e; Sikander and Prasad, 2015; Tiwari and Kaur, 2018) as below: 

𝐺(𝑠) = [

2(𝑠+5)

(𝑠+1)(𝑠+10)

(𝑠+4)

(𝑠+2)(𝑠+5)

(𝑠+10)

(𝑠+1)(𝑠+20)

(𝑠+6)

(𝑠+2)(𝑠+3)

]                                                          (35) 

 

=
1

𝐷(𝑠)
[
𝐴11(𝑠) 𝐴12(𝑠)
𝐴21(𝑠) 𝐴22(𝑠)

] 

Where, 

𝐷(𝑠) = (𝑠 + 1)(𝑠 + 2)(𝑠 + 3)(𝑠 + 5)(𝑠 + 10)(𝑠 + 20) 

= 𝑠6 + 41𝑠5 + 571𝑠4 + 3491𝑠3 + 10060𝑠2 + 13100𝑠 + 6000 

and 

𝐴11(𝑠) = 2𝑠5 + 70𝑠4 + 762𝑠3 + 3610𝑠2 + 7700𝑠 + 6000 

𝐴12(𝑠) = 𝑠5 + 38𝑠4 + 459𝑠3 + 2182𝑠2 + 4160𝑠 + 2400 

𝐴21(𝑠) = 𝑠5 + 30𝑠4 + 331𝑠3 + 1650𝑠2 + 3700𝑠 + 3000 

𝐴22(𝑠) = 𝑠5 + 42𝑠4 + 601𝑠3 + 3660𝑠2 + 9100𝑠 + 6000 

The complete order system has the poles as : −1, −2, −3, −5, −10, −20 and these poles are grouped 

into two clusters as below: 

Cluster-1 has poles ∶   −1, − 3, − 10 
Cluster-2 has poles∶   −2, − 5, −20. 

The cluster centers of these clusters are obtained by using equations (12)-(14) and the denominator of 

the reduced model is obtained as 

𝐷2(𝑠) = (𝑠 − 𝑐1𝑝)(𝑠 − 𝑐2𝑝)  (36) 

The various denominator polynomials of lower order model will be obtained for different values of 𝑋. 

For the value of 𝑋, the numerator polynomial is determined by using factor division method. For 𝑋 =  50, the 

transfer matrix of second order reduced model is obtained as equation (37). 
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[𝑅2(𝑠)] =
[
1.1858𝑠+2.0898 0.8505𝑠+0.8359
0.5406𝑠+1.0449 1.6734𝑠+2.0898

]

𝑠2+3.0666𝑠+2.0898
                           (37) 

 

Table 2. Comparison of various MOR methods in terms of ISE 
Reduction technique Reduced system 𝒓𝟏𝟏(𝒔) 𝒓𝟏𝟐(𝒔) 𝒓𝟐𝟏(𝒔) 𝒓𝟐𝟐(𝒔) 

Parmar, Mukherjee and 

Prasad (2007) 
[
6.0429𝑠 + 8.4707 3.9419𝑠 + 3.3883
2.8097𝑠 + 4.2354 8.0195𝑠 + 8.4707

]

𝑠2 + 13.6666𝑠 + 8.4707
 

0.225 0.0682 0.0613 0.6780 

Sikander and Prasad (2015) [
0.7938𝑠 + 0.6181 0.4273𝑠 + 0.2472
0.37952𝑠 + 0.309 0.93382𝑠 + 0.6181

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1672 0.0958 0.0312 0.2004 

Narwal and Prasad (2015) [
0.8930𝑠 + 0.6181 0.4517𝑠 + 0.2472
0.4314𝑠 + 0.3091 1.0579𝑠 + 0.6181

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1615 0.0897 0.0296 251.3574 

Parmar, Prasad and 

Mukherjee (2007) 
[
0.8503𝑠 + 0.6171 0.4617𝑠 + 0.2466
0.4093𝑠 + 0.3086 0.9977𝑠 + 0.6171

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1471 0.0884 0.0258 0.1598 

Prajapati and Prasad (2018 b, 
c) 

[
0.9098𝑠 + 0.7091 0.4916𝑠 + 0.2836
0.4373𝑠 + 0.3545 1.0753𝑠 + 0.7091

]

𝑠2 + 1.548𝑠 + 0.7091
 

0.0765 0.0595 0.0115 0.0808 

Proposed method X=10 [
1.106𝑠 + 2.4914 0.8909𝑠 + 0.9966

0.4907𝑠 + 1.2457 1.6874𝑠 + 2.4914
]

𝑠2 + 3.3483𝑠 + 2.4914
 

0.0157 0.0003 0.0024 0.0381 

Vishwakarma and Prasad 

(2009) 
[
1.1816𝑠 + 3.6508 1.0466𝑠 + 1.4603
0.4982𝑠 + 1.8254 1.6911𝑠 + 3.6508

]

𝑠2 + 4.3374𝑠 + 3.6508
 

0.0151 0.0078 0.0030 0.0469 

Narwal and Prasad (2016) [
1.3276𝑠 + 3.0962 1.0447𝑠 + 1.2444
0.6116𝑠 + 1.5480 1.7815𝑠 + 3.0960

]

𝑠2 + 4.0965𝑠 + 3.0965
 

0.0093 0.0040 0.0008 247.8492 

Proposed method X=50 [
1.1858𝑠 + 2.0898 0.8505𝑠 + 0.8359
0.5406𝑠 + 1.0449 1.6734𝑠 + 2.0898

]

𝑠2 + 3.0666𝑠 + 2.0898
 

0.0089 0.0002 0.0008 0.0377 

 

 
Figure 3. Qualitative comparison of the suggested approach and other existing model reduction techniques 

 

The comparison of the step responses for the entire order and lower order systems is shown in Figure 

2. When compared to some other conventional methods, it is evident that the response of the reduced model 

computed by the suggested scheme is substantially closer to the response of the given model. Additionally, it 

may be seen in Figure 4's frequency response characteristic. Table 2 presents a tabular comparison between the 

lower order system produced by the suggested technique and the other model reduction schemes found in the 

literature. It is unambiguously shown that the reduced system produced by the used technique closely resembles 

the specifications of the full order system with the lowest ISE value. The suggested approach yields the least 

ISE when X is taken to be 10, but it produces the least ISE when X is increased to X=50. Hence, a greater value 

for X can be chosen in order to improve the suggested method's accuracy. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
Figure 4: Frequency response comparison of (a) g11(s), (b) g12(s), (c) g21(s) and (d) g22(s). 
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Example 3: A fourth order regulator problem with its reference model given in [31] for the design of 

compensator controller is considered and expressed as 

𝐺(𝑠) =
𝑠3+12𝑠2+54𝑠+72

𝑠4+18𝑠3+97𝑠2+180𝑠+100
                                      (40) 

 

𝑀(𝑠) =
4.242𝑠+25

𝑠2+7.07𝑠+25
                                                                       (41) 

Reference model of open loop is expressed as 

𝑀̃(𝑠) =
𝑀(𝑠)

1−𝑀(𝑠)
=

4.242𝑠+25

𝑠(𝑠+2.828)
                                                         (42) 

Using the original system, the parameters of controller are obtained as follows 

𝐺𝑐(𝑠) =
𝑀̃(𝑠)

𝐺(𝑠)
=

𝑒0+𝑒1𝑠+𝑒2𝑠2

𝑠
=

𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
=

12.278+10.6337𝑠−1.3782𝑠2

𝑠
                       (43) 

Hence, 𝐾 = 12.278, 𝐾1 = 0.9957, 𝐾2 = 0.1296 

𝑅𝑐𝑙(𝑠) =
𝐺(𝑠)𝐺𝑐(𝑠)

1+𝐺(𝑠)𝐺𝑐(𝑠)
=

12.23𝑠4+159𝑠3+807.5𝑠2+1543𝑠+884

0.1296𝑠6+3.333𝑠5+42.8𝑠4+279.3𝑠3+1000𝑠2+1643𝑠+884
                         (44) 

The reduced order model obtained by proposed method with 𝑋 = 50 is given follows 

𝑅2(𝑠) =
0.6357𝑠+1.48

𝑠2+3.042𝑠+2.056
                     (45) 

By using the above reduced system, the parameters of controller are obtained as follows 

𝐺𝑐𝑟(𝑠) =
𝑀̃(𝑠)

𝑅𝑟(𝑠)
=

𝑒0+𝑒1𝑠+𝑒2𝑠2

𝑠
=

𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
=

12.2777+10.6334𝑠−1.1369𝑠2

𝑠
                        (46) 

Hence, 𝐾 = 12.2778, 𝐾1 = 0.8866, 𝐾2 = 0.0206. The close loop transfer of the original model with the 

compensator calculated by the obtained reduced system is as: 

𝑅𝑐𝑙(𝑠) =
𝐺(𝑠)𝐺𝑐𝑟(𝑠)

1+𝐺(𝑠)𝐺𝑐𝑟(𝑠)
=

10.89𝑠4+142.9𝑠3+735.2𝑠2+1447𝑠+884

0.02057𝑠6+1.37𝑠5+30.88𝑠4+243.6𝑠3+917.2𝑠2+1547𝑠+884
                  (47) 

The time responses of the original closed-loop plant with compensators are compared in Figure 3. 

Lower order systems and the original system are used to compute these compensators. The results of the 

simulation demonstrate that the produced compensators function well in both transient and steady state 

responses. Additionally, Figure 6's frequency response makes this evident. The time domain characteristics of 

the closed loop systems with compensators are displayed in Table 3. This table shows that the specifications of 

the closed loop models with compensators designed using the original system roughly match the time domain 

specifications of the closed loop system with the compensator computed using lower order systems. The 

compensator design that employs a lower order system is somewhat simpler than the compensator design that 

uses a higher dimensional system. Additionally, this table shows that the specifications of the needed reference 

system and the closed loop models with compensators are similar in the time domain.  Therefore, the 

compensator design may be done using the suggested method to get the dynamical systems to operate as 

needed. 

 

 
Figure 5: Comparison of time responses of reference model and closed system with compensator 

 

Table 3. Comparing the closed loop system's time domain the variables with the compensator 
Reduced techniques Reduced model Compensator 

(𝑲, 𝑲𝟏, 𝑲𝟐) 

Rise 
time 

(Second) 

Settling 
time 

(Second) 

Peak 
overshoot 

Peak 
time 

(Second) 

--- Reference model --- 0.2817 1.0338 1.0833 0.6123 

--- Original system 12.278,  0.9957, 
0.1296 

0.2057 0.8896 1.0903 0.4641 

Proposed method 

(X=50) 

𝟎. 𝟔𝟑𝟓𝟕𝒔 + 𝟏. 𝟒𝟖

𝒔𝟐 + 𝟑. 𝟎𝟒𝟐𝒔 + 𝟐. 𝟎𝟓𝟔
 

12.2777,  0.973, 

0.1069 

0.2027 0.9331 1.0556 0.4609 
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Hutton and Friedland 

(1975) 

0.6207𝑠 + 0.8276

𝑠2 + 2.069𝑠 + 1.149
 

12.2733, 0.9197, 

0.0530 

0.2308 1.0138 1.0270 0.7696 

Gutman (1982) 216𝑠 + 864

194𝑠2 + 1080𝑠 + 1200
 

12.278, 0.5848, 

0.1188 

0.293 1.4439 1.1394 0.7315 

Shamash (1974) 0.6779𝑠 + 0.5169

𝑠2 + 1.695𝑠 + 0.718
 

12.2794, 0.9939, 

0.1286 

0.2057 0.8921 1.0888 0.4645 

Prajapati and Prasad 

(2018 b, c) 

1.774𝑠 + 8.719

𝑠2 + 15.18𝑠 + 12.11
 

12.278, 1.1653, 

0.2993 

0.2393 1.5561 1.2646 0.5790 

Moore (1981) 1.002𝑠 + 8.931

𝑠2 + 15.18𝑠 + 12.11
 

11.9868, 1.1562, 

0.1988 

0.2116 0.8381 1.1741 0.4914 

Huang et al. (2013) 1.002𝑠 + 8.7193

𝑠2 + 15.18𝑠 + 12.11
 

11.9868, 1.1562, 

0.1988 

0.2086 1.1452 1.1803 0.4844 

Gu (2005) 3.07𝑠 + 70.46

𝑠2 + 107.9𝑠 + 95.62
 

11.9959, 1.0908, 
0.1901 

0.217 0.869 1.1649 0.4945 

 

 
Figure 6. Comparison of frequency responses of reference model and closed system with compensator. 

 

IV. Conclusion 
This paper presents a new way for minimizing the complexity of linear dynamic systems of higher 

order using MOR. Factor division approach and generalized pole clustering are used to obtain the lower order 

model. If the full order model is stable, this straightforward computational method guarantees the stability of the 

reduced order systems. Additionally, the suggested plan guarantees that the first few time moments of the entire 

order system are preserved in the reduced order model, maintaining the basic behavior of the factor division 

approach. The temporal response comparison shows that the suggested approach provides a more accurate 

approximation of the large-scale model. Furthermore, Tables 1-3 comprise the various performance indices that 

have been determined for the purpose of validating the suggested technique and comparing it to other reduction 

techniques that are currently in use. This comparison shows that the suggested method surpasses a few other 

well-known model reduction strategies in terms of performance. The techniques for creating compensators for 

large-scale systems using a reduced order model are also provided in this study. The accuracy of the suggested 

methodology is demonstrated and validated with three standard examples. 
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