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 Abstract: Neural Adaptive based on feedback linearization is used in this study to control the velocity and 

recognition of an electro hydraulic servo system (EHSS) in the presence of flow nonlinearities as well as 

internal friction and noise. This controller consists of four parts: PID controller, feedback linearization 

controller, neural network controller and the neural network identifier. The feedback linearization controller is 

used to prevent the system state in a region where the neural network can be accurately trained to achieve 

optimal control. The combination of controllers produces a stable system which adapts to optimize 

performance. This technique, as shown, can be prosperously used to stabilize any selected operating point of the 

system with noise and without interference. All consequences achieved are validated by computer simulation of 

a nonlinear mathematical model of the system. The fore mentioned controllers have a vast range to control the 

system. We compare Neural Adaptive based on feedback linearization controller results with feedback 

linearization, back stepping and PID controller.  
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I. INTRODUCTION  
An introduction to the hydraulic systems liquids is also uncompressible. This property has caused to 

use liquids as a proper means to exchange and transport work. Therefore, they can be used in designing which 

why simple can move extra resisting power with little motivating force, this property is called hydraulic. 

Nowadays, in very industrial process is, transporting power as a very cheap and highly accurate method is aimed 

at. In this regard, applying compressed liquid to transport and control power is a spreading in all industrial 

branches [1, 2]. 

Applications of liquid power are divided into two important branches of hydraulic and pneumatic. 

Pneumatic is used in cases where relatively low forces (about ton) and high speed movement is needed (such as 

the systems used in moving parts). Pneumatic is used in cases where relatively low forces (about ton) and high 

speed movement is needed (such as the systems used in moving parts of robots. While hydraulic system 

applications are basically in cases where high power and speedy accurate controls are desired [1, 2].  

Because the EHSS has proper control over inertial and torque loads, it is widely used in industry. Furthermore it 

yields precise and immediate answers [1, 2]. EHSS can be classified according to the aimed function, velocity, 

torque, force etc. In the past, dozens of studies have been carried out regarding different ways of handling 

methods of electro hydraulic servo system (EHSS). Reference [3] gives more information in this regard. An 

intelligent CMAC, FNN neural controller that uses a feedback error learning approach appears in [4, 5] which is 

highly complicated and [3] explain ways based on feedback linearization and back stepping However, it is not 

easy , nor is it simple to design such  controllers. Other control methods will appear in [6-13]. 

Here, we intend to analyze and propose an adaptation based on the feedback linearization controller as 

well as the identifier for the EHSS system. 

The rest of the paper is arranged as follows. Part II, contains the mathematical model of the EHSS 

system. Part III deals with the RBF controller, identifier, PID controller and adaptive controller in detail. Section 

IV discusses the simulation results of the proposed control strategies. In the end, the conclusion is given in 

Section V. 

 

II. COMPOSE A MATHEMATICAL MODEL OF THE SYSTEM  
An outline of an electro hydraulic velocity servo system is shown in Fig. 1. The basic components of 

this system are: 1. Hydraulic power supply, 2. Accumulator, 3. Charge valve, 4. Pressure gauge device, 5. Filter, 

6. Two-stage electro hydraulic servo valve, 7. Hydraulic motor, 8. Measurement device, 9. Personal computer, 

and 10. Voltage - to- current converter. 
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Fig. 1. Electro hydraulic velocity servo system 

A mathematical representation of the system is derived using Newton’s Second Law for the rotational motion of 

the motor shaft. It is assumed that the motor shaft does not change its direction of rotation, x1>0.This is a 

practical assumption and in order to be satisfied, the servo valve displacement x3 does not have to move in both 

directions. This assumption restricts the entire problem to the region where x3>0. 

If the state variables are as follows: 

1. x1 is hydro motor angular velocity. 

2. x2 is load pressure differential. 

3. x3 is valve displacement. 

Then the model of the EHSS is given by: 
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Where the nominal values of parameters are: jt = 0.03 kgm
2
- Total inertia of the motor and load referred to the 

motor shaft, qm = 7.96×10
-7 

m
3
/rad – volumetric displacement of the motor, Bm=1.1×10

-3 
Nms  – viscous 

damping coefficient, Cf = 0.104  -dimensionless internal friction coefficient, VO = 1.2×10
-4 

m
3
  - average 

contained volume of each motor chamber, Be =1.391×10
9  

pa  - effective bulk modulus, Cd=0.61  – discharge 

coefficient, Cim=1.69×10
-11 

m
3
/pa.s  - internal or cross-port leakage coefficient of the motor, PS=10

7 
pa  - supply 

pressure, ρ=850 kg/m
3
  - oil density, Tr=0.1 s  - valve time constant, -  kr=1.4×10

-4
 m

3
/s.v  - valve gain, ka=1.66

-4
 

m
2
/s  - valve flow gain, w= 8π×10

-3
 m - surface gradient. 

The control objective is stabilization of any chosen operating point of the system. It is readily shown that 

equilibrium points of system are given by: 

X1N: Arbitrary constant value of our choice 
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(2) 

 

With very simple linearization we can find out that the system is minimum phase which allows application of 

many different design tools. In [14] Alleyne and Liu developed a control strategy that guarantees global stability 

of nonlinear, minimum phase single-input single-output (SISO) systems in the strict feedback form by using a 

passivity approach and they later used this strategy to control the pressure of an EHSS. 
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III. NEURAL-ADAPTIVE CONTROLLER 
The In this study it was tried to design a velocity controller for electrohydraulic servo system which is 

adaptive based on feedback linearization controller. This controller, as shown in figure 3, consists of four parts: 

linear feedback controller, a nonlinear feedback linearization controller, an adaptive neural network controller 

and a neural network identifier. The total control signal is computed as follows: 

( ) ( ) (1 ( ))pid bk adu t u m t u m t u   
 

(3) 

 

Where pidu
 is the linear feedback control, adu

 is the adaptive neural network control and bku
 is the feedback 

linearization control. The function 
( )m t

 allows a smooth transition between the feedback linearization and 

adaptive neural network controllers, based on the location of the system state:  
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Where the regions might be defined as in Fig.2. 

 

Fig. 2. Membership functions 

The feedback linearization controller is used to keep the system state in a region where the neural network can 

be accurately trained to achieve optimal control. The linear feedback controller is turned on (and the neural 

controllers is turned off) whenever the system drifts outside this region. The combination of controllers 

produces a stable system which adapts to optimize performance. 

It should be noted that this neural controller and neural identifier uses the radial basis neural network. The linear 

feedback control is PID controller and the feedback linearization control is input-output controller. 

 

 
Fig. 3. block diagram of the Neural – Adaptive Controller 

A. RBF neural network 

In this study, we use a type of neural networks which is called the radial basis function (RBF) 

networks. These networks have the advantage of being much simpler than the Perceptrons while keeping the 

major property of universal approximation of functions[15]. RBF networks are embedded in a two layer neural 

networks, where each hidden unit implements a radial activated function. The output units implemented a 

weighted sum of hidden unit outputs. 
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The input to a RBF network is nonlinear while the output is linear. Their excellent approximation capabilities 

have been studied in [16]. The output of the first layer for a RBF network is:  
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The output of the linear layer is: 

1
( ) , 1,2...., .

n T

i ji i ji
y w x w j n


    

 

 

(6) 

 

Where
nx R and

my R
 are input vector and output vector of the network, respectively, and 

1[ ,...., ]T

n  
 is the hidden output vector, n is the number of hidden neurons, 1[ ,...., ]T

j jnw w w
  is 

the weights vector of the network, parameters ic
 and i  are centers and radii of the basic functions, 

respectively. The adjustable parameters of RBF networks are w, ic
 and i . Since the network's output is linear 

in the weights, these weights can be established by least square methods. The adaptation of the RBF parameters 

ic
 and i  is a non-linear optimization problem that can be solved by gradient-descent method. 

 

B. RBF Identifier for EHSS 

The output RBF1 neural network variable, 
( )u

will be used as the signal-input for establishing a RBF2 neural 

network model to calculate the identifier law, 1z
.The output of the identifier based on RBF2 networks is: 
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Where n is the number of hidden layer neurons, parameters iM
 and i  are centers and radii of the basic 

functions and 1z
is the final closed-loop identifier input signal.  
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Updated equation of the weighting parameters is: 
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Finally we can find updating rule as follow: 

22new oldv v EQ 
 

(12) 

C. RBF controller for EHSS 

The error variable, 
( )e

 will be used as the single-input signal for establishing a RBF1 neural network model to 

calculate the control law, u. Then for the single-input and single-output case in this paper, the output of the 

controller based on RBF1 networks is: 
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Where n is the number of hidden layer neurons and u is the final closed-loop control input signal. 

Updated equation of the weighting parameters is: 
2

1new old

e
w w

w



 

  

(14) 

12new old

e
w w e

w



 

  

(15) 

1 1z ze u

w w u w

  
  

     

 

(16) 

1 1z z

u u

 


 



 

1 1z z Q

u Q u

  
 

  

 

 

1

2
2

z u M
v Q

u 

 
 





 

u

w




  

 

(17) 

 

(18) 

 

(19) 

 

(20) 

 

Finally we can find updating rule as follow: 
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D.  PID controller for EHSS 

PID controllers are used in industrial control systems vast because they have a few parameters which need to be 

adjusted its parameters includes control signals which are proper with error between reference and real output 

(p), Integral and differential of error (I) and (D).   
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Which 
( )u t

 and 
( )e t

 are control signals and error. pk
, iT

and dT
 are parameters should be adjusted. Transfer 

function equation 2 as follow: 
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The main characteristics of PID controllers are their capacity to remove stable state error in response to step 

input (because of Integration factor) and predict the output variance (if differential factor is used). 

 

IV. SIMULATION RESULTS 
In this section, the results of simulation are shown. The parameters of the PID controller are chosen 

such that pk
, ik

 and dk
 are 0.0317, 0.0405 and 4.05

410  respectively. 

The Neural Adaptive controller has been compared with feedback linearization controller, back stepping and 

PID controller. They are show in figures (4, 5, 6, and 7). Figures (4, 5, 6, and 7) show the system output, the 

signal controller and the system states without the presence of output noise. Figure 8 show the function 
( )m t

. 

To show the capabilities of the controller introduced in this paper, Gaussian noises with follow property have 

been applied to the aimed system. 
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Figures (9, 10, and 11) show the results of the experiment with the presence of output Gaussian noise. 
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Fig. 4. Simulation result 1x
without output noise for 
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Fig. 5. Simulation result 2x
without output noise for 
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Fig. 6. Simulation result 3x
without output noise for 
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Fig. 7. Simulation result u[v] 
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Fig. 9. Simulation result 1x
with output noise for 
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Fig. 11. Simulation result 1x
with output noise for 
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Results show that Neural Adaptive controller delivers the Hydro motor angular velocity to the desired velocity 

much more quickly than feedback linearization, back stepping and PID controllers and has shorter settling time 

than other controllers also show that in presence output noise Neural Adaptive controller is robust controller. In 

table I we compare Neural Adaptive based on feedback linearization controller result with other controllers. 
 

Table I. Comparison results controllers 
 

Number Controller Maximum signal control 

(volt) 

Settling time 

(SEC) 

1 Neural Adaptive based on feedback 

linearization [purpose] 

1.4 0.5 

2 PID[4] -10 3 

3 FEL[17] 2.5 2.5 

4 Neural Networks[5] 5 6 

5 Feedback Linearization[3] 1.5 7 

6 Back Stepping[3] 1.4 7 

7 PDC[17] 3.5 3 

8 Mamdani Fuzzy[4] 1.4 11 

9 Neural Fuzzy[4] 30 4 
 

Table I show that Neural Adaptive based on feedback linearization controller has shorter settling time than other 

controllers and it has less Maximum signal control competed with other controllers. 

 

V. CONCLUSIONS 
This paper introduced Neural Adaptive based on feedback linearization method for control and 

identification of electrohydraulic servo system which has practical uses in many industrial systems. 

In this paper, a Neural Adaptive control method for EHSS is proposed, which consists of four parts: the 

linear feedback controller, the feedback linearization control, the neural network controller and the neural 

network identifier. It should be noted that the linear feedback controller is PID controller type and this neural 

controller and neural identifier used the radial basis function (RBF) network controller and the radial basis 

function (RBF) network identifier. The radial basis output is a linear function of the network weights, which 

allows faster training and simpler analysis than is possible with multilayer networks. Neural Adaptive controller 

is designed for stabilization of EHSS system to the desired point in the state space. Results obtained from the 

simulation show the superiority of the control system suggested in this paper. Neural Adaptive controller has 

shorter settling time than other controllers. It is also robust in presence of output noise applied to the aimed 

system. 
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