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Abstract : The real time controls at the central energy management center in a power system, continuously 

track the load changes and endeavor to match the total power demand with total generation in such a manner 

that the operating cost is least. Conventional optimization techniques are cumbersome for such complex 

optimization tasks and are not suitable for on-line use due to increased computational burden. This paper 

proposes a neuro-fuzzy power dispatch method where the uncertainty involved with power demand is modeled 

as a fuzzy variable. Then Levenberg-Marquardt neural network (LMNN) is used to evaluate the optimal 

generation schedules. This model trains almost hundred times faster that the popular BP neural network. The 

proposed method (Hybrid Neuro Fuzzy System) has been tested on two test systems with six and thirteen 

generating units and found to be suitable for on-line economic dispatch.  

Keywords: Economic dispatch (ED), Lambda iteration method, Gaussian membership functions, linguistic 

categories, Price penalty factor, Levenberg Marquardt algorithm, Hybrid Neuro Fuzzy System (HNFS)  

 

I. Introduction 

The basic objective of economic load dispatch of electric power generation is to schedule the 

committed generating unit outputs so as to meet the load demand at minimum operating cost while satisfying all 

units and system equality and inequality constraints. Main aspect of economic load dispatch is the on line 

economic dispatch where in it is required to distribute the load among the generating units actually paralleled 

with the system in such manner as to minimize the total cost of supplying the minute to minute requirement of 

the system. This problem is solved traditionally using mathematical programming based on optimization 

techniques such as lambda Iteration method, gradient method and dynamic programming method [1-3].  

The classical lambda-iteration method has been used by power utilities for economic load dispatch 

(ELD). In Lambda iteration method convergence of the iterations is affected by the initial choice of lambda. 

Two types of iterations are involved in this method. First, lambda moves from its initial assumed value to its 

final optimal value iteratively. For systems with many generators, this movement can be oscillatory and may 

increase the computational time. Secondly, for each trial value of lambda, the associated generations have to be 

obtained using sub-iterations. Thus, the sub-iterations have to be involved many times. Therefore, this method 

could become too time consuming for effective real-time implementation. 

Various artificial neural network based methods have been proposed for the ED problem [4-10]. 

Application of Hopfield method [4,5] and BP based methods [6-9] converge very slowly and suffer from local 

minima problem. Two phase neural network [9], Radial basis function [10] and Levenberg-Marquardt 

algorithms [11] have also been proposed as they do not suffer from these slow convergence problems. Recently 

there is an upsurge of hybrid methods [12-13] based on alternate approaches such as neural network and fuzzy 

logic due to their ability to model vague and noisy practical problems effectively. Approaches based on 

quadratic programming [14], fuzzy satisfaction maximizing technique [15], and genetic and evolutionary 

programming based hybrid approaches [16, 17] have been proposed for this problem. 

In most of the common Multi-layer perceptron neural networks (MLP), the training is based on non-

linear optimization techniques. All these methods suffer from local minima problems, tend to converge very 

slowly and do not always achieve global minima. Several high performance algorithms are developed to train 

MLP models that converge 10 to 100 times faster than BP algorithm. These algorithms are based on numerical 

optimization techniques like conjugate gradient, quasi Newton and Levenberg-Marquardt algorithms. Out of 

these, Levenberg-Marquardt algorithm is found to be the fastest method for training moderate sized feed-

forward neural networks [18-19].  

In this paper, a hybrid model has been developed for on-line economic dispatch which uses fuzzified 

inputs for training Levenberg-Marquardt neural network (LMNN).. In this paper, the efficiency of the hybrid 

LMNN (HNFS) has been demonstrated for the ED problem on 6 and 13-generating unit systems taken from 

reference [20]. 
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II.  Methodology 
The block diagram of the proposed hybrid neuro-fuzzy approach is shown in Fig 1. A large number of 

loading patterns are generated in wide range of loads as shown in block I, and for each value of total power 

demand, the ED problem was solved using conventional lambda iteration method [1] to obtain optimal dispatch 

among the generating units [1], (block II). The generated power demand is fuzzified into different linguistic 

categories (block III). A large number of input-output patterns are thus generated to train the LMNN, taking 

fuzzified total power demand as the input. The trained LMNN (block IV) estimates the optimal power 

dispatches as well as operating cost for unknown patterns instantaneously.  
 

2.1  Optimal Generation Scheduling  

The objective of economic load dispatch is to minimize the total generation cost in a power system for 

a given load while satisfying various constraints. Thus economic dispatch is a constrained optimization problem 

and can be formulated as  

Minimize the overall cost of generation 
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For a given real load DP  at all the buses, the system loss LP  is a function of active power generation at 

each generating unit. To calculate system losses, two methods are in general use. One is the method of penalty 

factors and the other is the use of constant loss formula coefficients or B-coefficients [1,2]. The latter is 

commonly used by the power utilities and is adopted in this study. In this method, transmission losses are 

expressed as a quadratic function of generations: 
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Fig.1 shows the block diagram of the economic optimal generation scheduling in a conventional power 

system. The main challenge for stable and reliable operation of an electric power system is to match the 

generation with the loads, under continuously varying system conditions including demand, supply and 

contingencies. The objective is to assign generations at connected generating units of the system in such a 

manner that the cost of operation is minimum while all the operating constraints are satisfied. This is a complex 

time intensive task for which optimization programs are run to compute the optimal values of real power 

generations every half an hour or so. When the optimal values are available, the appropriate control actions are 

taken through Automatic Generation Control (AGC) involving governor control and adjustment of valve setting 

adjusting fuel supply such that the units generate optimal allocated values.  

 

2.2 Hybrid Approach for ELD 

  In the proposed hybrid approach, a large number of loading patterns were generated in wide range for 

the system under study. The generated patterns are fuzzified to include the uncertainty involved with power 

demand. Four fifth of the input-output pairs thus generated, are used to train the neural network. In order to 

speed up the neural network training, Levenberg-Marquardt BP algorithm is applied. 

 

2.3 Fuzzy modeling of load demand 

The power system load demand constantly changes and for each demand level optimum generation 

allocation is to be found. Development of probabilistic load models poses problems due to lack of proper and 

consistent field data. On the other hand fuzzy load data is presented in the form of possibility distributions of 

loads where the membership values can be derived from qualitative assessment, linguistic declarations, 

operator’s past experiences or heuristics. In contrast to the conventional deterministic/ probabilistic load models, 
the proposed approach includes the stochastic behavior of loads by modeling them as fuzzy quantities having 

membership values in different linguistic categories. The incorporation of fuzziness in on-line applications is 
effective as the data available at the energy management center is normally vague, noisy and irrelevant. 
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.  

         To model the uncertainty associated with load demand it is fuzzified into different linguistic categories. 

For the fuzzy representation of power demand, membership values in the range of 0 to 1 are assigned to each 

pattern generated. Thus crisp demand values are converted to fuzzy values. Load uncertainty is modeled by 

representing it as a fuzzy variable with memberships in different fuzzy linguistic categories, such as, very small 

(VS), small (S), medium (M), large (L) and very large (VL). The boundaries of these categories are fuzzified 

based on intuition and experience. Every load value in the crisp set is assigned membership values that represent 

the possibility of load being in that category. Non-linear guassian membership functions are used to find the 

membership values of PD in different fuzzy categories. In place of the more common triangular or trapezoidal 

functions, non-linear membership functions are found to be more suitable for representing power demand, as 

they ensure a smoother and more practical transition of loads from one category to the other. Also it does not 

add any complexity to the model. The membership value (  ) is calculated as [20]   
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   ai and bi are parameters corresponding to linguistic category i of power demand. These values can be chosen 

keeping in mind that ia represents the central value of the corresponding category, around which the 

membership value is equal to 1.0 and bi, controls the width of the corresponding category. Heuristic and past 

experience play a key role in deciding the parameters ai and bi,,. Similarly the number of linguistic categories 

used for modeling may also vary from system to system. Thus by changing the parameters ai and bi, different 

power systems can be modeled for any range of load variation. Table 2 and Table 7 show the fuzzification data 

used in this paper. 

 

2.4   Levenberg-Marquardt Neural Network 

In order to speed up the neural network training, Levenberg-Marquardt BP algorithm is applied. Various 

architectures of the LMNN models having different number of hidden nodes were trained for the same error 

goal and the optimal structure has been selected on the basis of the least training time. The trained LMNN has 

been found to be very fast and suitable for on-line generation dispatch as compared to the conventional methods 

which are slow and sometimes fail to converge.  

The Levenberg-Marquardt algorithm is a variation of Newton’s method [18]. This algorithm is very 

well suited to neural network training, where the performance index is the mean squared error and the variables 

x are weights of the network.  During supervised training a set of input patterns are presented to the network 

along with desired outputs (obtained using conventional method). The training is started with small random 

weights and the network is made to adjust the weights x such that the difference between the network output and 

Electrical power System 

Fuzzification of load demand 
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∑ PLi = PD 

PG1         PG2 ……PGM      F    E 

Pattern generation using lambda iteration method 

Patterns Training 
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Hybrid neuro-fuzzy training for estimation of optimal 

generation 
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Block IV 
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the target output is minimized. The mean squared error summed over m number of output nodes, for PT number 

of patterns is defined as 

 
PT m

mm OutputetT
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ER 2)arg(
2

1
                                                                                                  (6) 

Newton’s update for optimizing mean squared error ER(w) is  
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The gradient can therefore be written in matrix form  

        xvwJxF T2                                                                                                                                   (10) 

where J is the Jacobean matrix giving sensitivity. Next, the Hessian matrix is to be determined. The k, j element 

of the Hessian matrix would be     
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The Hessian matrix can then be expressed in matrix form. 

       wSwJwJwER T 222                                                                                                               (12) 
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If S(w) is assumed to be small, the Hessian matrix can be approximated as   

     wJwJwF T22                                                                                                                       (14)           

Substituting (10) and (14) into (7), the Gauss-Newton method is obtained as 
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From this, it is evident that the advantage of Gauss-Newton method over the standard Newton’s method is that it 

does not require calculation of second -order derivatives. One problem with the Gauss-Newton method is that 

the matrix H = J
T
J may not be invertible. This can be overcome by using the following modification to the 

approximate Hessian matrix.  

IHG                                                                                                                                                       (16) 

To make this matrix invertible, suppose that the eigen values and eigen vectors of H are  n .....,, 21  and 

 nzzz ,......,, 21   

Then   iiiiiii zzzHzzIHGz                                                         (17) 

Therefore the eigenvectors of G are the same as the eigenvectors of H and the eigen values of G are ( )(  i
. 

G can be made positive definite by increasing   until   0i    for all i, and therefore the matrix will be 

invertible. This leads to the Levenberg-Marquardt algorithm [18].   
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This algorithm has a useful feature that as k  is increased it approaches the steepest descent algorithm with 

small learning rate  
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and if k  is decreased to zero the algorithm becomes Gauss-Newton. The algorithm begins with k set to some 

small value . 
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III. Results and Discussion 
The effectiveness of the proposed hybrid approach for  economic dispatch problem has been 

demonstrated on two test systems. It has been found that the LMNN trains very fast (in a few iterations) due to 

the effective Levenberg-Marquardt algorithm. In comparison to slow converging conventional methods this 

method is highly suitable for determining on-line dispatch strategy accurately in modern market driven power 

systems. Using this algorithm, it is easy to decide the optimum neural network architecture for a given error 

goal.  

 

3.1   Six Generating Unit System 

The cost coefficient and generation limits of six-unit system are given in Table 1. Transmission losses 

are calculated using B matrix [1] in Table 3. To establish the effectiveness of developed LMNN for ED, the 

neural network models are trained for 6-generating unit system. The load patterns are generated by varying the 

load at each bus of the system randomly. The conventional lambda iteration method was applied for each load 

pattern to obtain the optimum value of real power at different generating units, for minimum cost .Total 300 

patterns were generated by changing load (PD) between 900MW to 1350 MW. The generated patterns were 

fuzzified using eq. (6) and data in Table 3. The values in Table 4 are selected based on operator experience or 

expert judgment. The fuzzification of loads is represented in Fig. 2. Then 240 fuzzified patterns were used for 

trainings LMNN while remaining 60 patterns were used for testing the performance of the trained network. The 

LMNN is also capable of producing the minimum cost content corresponding to the optimal solution. 

 

 Table 1.Cost Coefficients and Generation limits of Six-unit system 

S. No. Pimin Pimax ai bi ci 

 
1 100 500 0.007 7 200 

2 50 200 0.0095 10 200 

3 80 300 0.009 8.5 220 

4 50 150 0.009 11 200 

5 50 200 0.008 10.5 220 

6 50 120 0.0075 12 190 

 

Table 2.Data for Fuzzy Modeling of Power Demand for 6-unit System 

Linguistic 

Category for PD 

Very 

Small 

Small Medium Large Very 

Large 

ai 
900 1000 1100 1200 1300 

bi 
50 60 70 60 65 

 

Table 3.B-coefficients of Six-unit system 

 

 

 

 

 

 

 

 

 

 

The developed LMNN has five input nodes (membership values of PD in five fuzzy categories of very 

low, medium etc) and 7 output nodes (6 nodes for unit outputs, one for incremental fuel cost). The optimum size 

of the neural network has been obtained by training LMNN models having different no. of hidden nodes for the 

training error goal of 110
-3

 pu. The training performance of the neural networks having different structures has 

been shown in Table 4. As can be observed from Table 4, the LMNN model having 18 hidden nodes (5-18-7) is 

the most efficient structure, as it required the least training time for the same error goal.  

 

Table 4.Training Performance of Hybrid LMNN (HNFS) with different structures for  6-units system 

0.0017 0.0012 0.007 -0.0001 -0.0005 -0.0002 

0.0012 0.0014 0.0009 0.0001 -0.0006 -0.0001 

0.0007 0.0009 0.0031 0 -0.001 -0.0006 

-0.0001 0.0001 0 0.0024 -0.0006 -0.0008 

-0.0005 -0.0006 -0.001 -0.0006 0.0129 -0.0002 

-0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.015 
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S.No No. of Hidden nodes Training time No. of Epochs 

1 11 1.0 s 6 

2 18 .25 s 5 

3 20 .7 s 15 

4 24 .4 s 7 

5 28 2.1 s 33 

 

The testing performance (percentage testing error) of the trained LMNN for all the 60 testing patterns 

is compared with conventional method and plotted in Fig. 3-Fig. 9. The figures clearly show that the trained 

neural network produces accurate results i.e. almost negligible error for all the testing patterns for all the seven 

outputs (generations, incremental fuel cost (lambda) ). Result of about 8 testing patters have been compared in 

Table 5 and Table 6 with conventional results  to show that the developed hybrid approach(HNFS) is capable of 

computing the real power generations and  incremental cost. 

.
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Fig. 2. Fuzzy modeling of power demand for ED (6-unit system) 
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Fig. 3.Results for Lambda of 6-Generating unit System 
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Fig. 4.Results for power allocation of unit-one of 6-Generating unit System 
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Fig. 5.Results for power allocation of unit-two of 6-Generating unit System 
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Fig. 6.Results for power allocation of unit-three of 6-Generating unit System 
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Fig. 7.Results for power allocation of unit-four of 6-Generating unit System 
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Fig. 8.Results for power allocation of unit-five of 6-Generating unit System 
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Fig. 9.Results for power allocation of unit-six of 6-Generating unit System 

 

Table 5.Testing Performance of The (5-18-7) hybrid LMNN (HNFS) 

 

 

Table 6.Testing Performance of The (5-18-7) hybrid LMNN (HNFS) 

 

S.no. Output 

value 

PD=902.513 PD=951.576 PD=1014.646 PD=1067.224 

Classical HNFS Classical HNFS Classical HNFS Classical HNFS 

1. Lambda 12.445 12.446 12.631 12.633 12.866 12.865 13.033 13.035 

2. Pg1 351.091 351.099 362.218 362.228 376.242 376.250 386.103 386.113 

3. Pg2 119.257 119.265 128.554 128.563 140.264 140.272 148.549 148.558 

4. Pg3 206.879 206.888 216.572 216.582 229.126 229.137 237.825 237.832 

5. Pg4 78.848 78.857 88.959 88.942 102.192 102.198 111.306 111.317 

6. Pg5 107.715 107.722 117.603 117.609 130.098 130.107 138.871 138.879 

7. Pg6 50.000 50.010 50.000 50.005 50.483 50.486 59.465 59.469 



Hybrid Neuro-Fuzzy System for Optimal Generation scheduling in Electrical Power systems 

www.iosrjournals.org                                                     8 | Page 

 

3.2  Thirteen Generating Unit System 

The cost coefficient data along with generating limits for the Thirteen-unit power system i and B-

coefficients have been taken [10].  In this case also, 300 load patterns were generated, changing the load at 

different buses randomly between 2000MW and 2400 MW in wide range. The generated loads were fuzzified 

using eq (6) and the data selected for fuzzification which is given in Table 7. The fuzzified demand for the full 

range is plotted in Figure 10 showing the memberships in all five categories. Out of 300 patterns, 240 patterns 

were used for training using  Levenberg-Marquardt algorithm based feed forward network, while the remaining 

60 patterns were used for the testing purpose.  

 

Table 7.Data for fuzzy modeling of power demand for 13-unit system 

 

Linguistic Category 

for PD 

Very Small Small Medium Large Very Large 

ai 
2000 2090 2180 2270 2360 

bi 60 60 70 60 65 
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Fig. 10. Fuzzy modeling of power demand for ED (13-unit system) 

 

Table 8.Training Performance of hybrid LMNN for different structures for 13-unit system 

 

S.No. No. of Hidden nodes Training time No. of Epochs 

1 11 0.6 s 8 

2 19 1.2 s 14 

3 22 1.5 s 12 

4 25 1.7 s 12 

5 30 3.6 s 20 

 

S.no.  Output 

value 

PD=1100.293 PD=1162.256      PD=1249.381         PD=1332.736 

Classical HNFS Classical HNFS Classical HNFS Classical HNFS 

1. Lambda 13.138 13.139 13.336 13.339 13.615 13.617 13.928 13.930 

2. Pg1 392.305 392.314 403.926 403.934 420.264 420.272 438.075 438.082 

3. Pg2 153.771 153.780 163.579 163.585 177.421 177.429 193.084 193.093 

4. Pg3 243.308 243.317 253.604 253.612 268.133 268.141 284.301 284.309 

5. Pg4 117.053 117.062 127.852 127.861 143.106 143.113 150.000 150.008 

6. Pg5 144.389 144.396 154.730 154.739 169.273 169.279 184.054 184.059 

7. Pg6 65.109 65.118 75.676 75.684 90.511 90.518 105.091 105.099 
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After training different structures for different number of hidden nodes for the training error goal of 

110
-3

 pu, the optimum size of LMNN for 13-unit economic dispatch problem was found to be (5-11-14).   The 

training performance of the neural networks having different structures has been shown in Table 8.  The results 

of the trained neural network for the previously unseen 60 patterns have been shown in Fig 11-Fig 24.  The 

testing results of 4 patterns are shown in Table 9 and are compared with those obtained from classical lambda 

iteration method. It can be seen that the proposed LMNN based hybrid method (Hybrid Neuro Fuzzy System) is 

accurate and trains very fast without facing local minima problems. 

Table 9.Testing Performance off The (5-11-14) hybrid LMNN (HNFS) 

 

S.no. Out Put 

Value 

PD=2004.772 PD=2240.795 PD=2349.380 PD=2384.915 

Classical HNFS Classical HNFS Classical HNFS Classical HNFS 

1 Lambda 9.153 9.155 9.498 9.496 9.488 9.489 9.546 9.547  

2 Pg1 60 60 60 60 60 60 60 60  

3 Pg2 60 60.003 60 60.006 94.566 94.569 101.806 101.8  

4 Pg3 60 60.002 106.16 106.17 101.02 101.03 108.795 108.8  

5 Pg4 60 60.002 99.564 99.569 93.637 93.638 100.802 100.8  

6 Pg5 60 60.004 60 60.002 90.769 90.762 97.696 97.7  

7 Pg6 60 60.002 102.07 102.07 96 96.006 103.366 103.4  

8 Pg7 82.713 82.715 120 120.01 120 120.01 120 120  

9 Pg8 80.246 80.242 120 120 120 120 120 120  

10 Pg9 83.927 83.93 120 120 120 120 120 120  

11 Pg10 55 55.003 55 55.004 120 120.01 120 120  

12 Pg11 680 680 680 680 680 680 680 680  

13 Pg12 360 360 360 360 360 360 360 360  

14 Pg13 360 360 360 360 360 360 360 360  
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Fig. 11.Results for Lambda of 13-Generating unit System 
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Fig. 12.Results for cost of operation for unit one of 13-Generating unit System 
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Fig. 13.Results for cost of operation for unit two of 13-Generating unit System 
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Fig. 14.Results for cost of operation for unit three of 13-Generating unit System 
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Fig. 15.Results for power generation for unit four of 13-Generating unit System 
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Fig. 16.Results for cost of operation for unit five of 13-generating unit system 
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Fig. 17. Results for cost of operation for unit six of 13-generating unit system 
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Fig.18. Results for cost of operation for unit seven of 13-generating unit system 
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Fig.19. Results for cost of operation for unit eight of 13-generating unit system. 
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Fig.20. Results for cost of operation for unit nine of 13-generating unit system. 
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Fig.21. Results for cost of operation for unit ten of 13-generating unit system 
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Fig.22. Results for cost of operation for unit eleven of 13-generating unit system. 
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Fig.23. Results for cost of operation for unit twelve of 13-generating unit system. 
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Fig.24. Results for cost of operation for unit thirteen of 13-generating unit system. 

 

IV. Conclusion 
The paper proposes an efficient hybrid method for handling the complex problem of optimum 

generation allocation for constantly changing loads, keeping operating cost at their least level. Classical lambda 

iteration method for economic load dispatch problem for a practical power system is found to be too time 

consuming for effective real-time implementation. 

The proposed hybrid Levenberg-Marquardt based neural network (HNFS) is trained to provide the 

optimal value of incremental cost and economic generation dispatch on all the committed generating units for a 

given power demand. Due to the fuzzification of input power demand the network is expected to perform well 

under practical conditions where the data may be vague, noisy or incorrect. During testing phase, the trained 

hybrid network provided accurate results for previously unseen patterns. The proposed method is noise tolerant 

and can adapt to changing system conditions very easily. As the training of the LMNN using Levenberg- 

Marquardt algorithm is extremely fast, it may be used for on-line implementation at energy management centre.  
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