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Abstract: This work models the quantization effects dominating a nano-dimensional symmetric InAlAs/InGaAs 

double heterostructure DG-HEMT (double-gate HEMT). This is done by solving the one-dimensional (1D) time-

independent Schrodinger equation in the nanoscale channel comprising of symmetric double triangular 

quantum well (DTQW) separated by a barrier in the DG-HEMT. The electron confinement due to the finite 

potential profile of a DTQW is analyzed and eigenenergies and the wave functions are calculated. Effect of the 

external applied fields at the gates controlling the electron confinement in the channel has been studied. The 

electron concentration is calculated and its distribution between the two quantum wells in InGaAs channel 

under the influence of different gate bias has been studied. A shift in electron concentration profile is observed 

from one well to another by the tunneling phenomenon at different applied electric fields indicating coupling 

between the two quantum wells. The calculated electron concentration profile obtained at equilibrium has been 

compared with the simulated results obtained from Quantum moments model and also with a semi-classical 

model.  

Keywords - double-gate HEMT, double triangular quantum well (DTQW), eigenenergies, Schrodinger 

equation, wavefunction.  

 

I. INTRODUCTION  
Quantum heterostructures form the basis of quantum well devices that are now commercially useful 

products with their superior applications in aeronautics, space, and military communication. Amongst all 

devices, InP based InAlAs/InGaAs HEMTs are extensively used in microwave circuits and digital IC‟s and are 

considered to be the most promising devices for millimeter wave and optical communications due to their 

superior high frequency and low noise performances [1-2]. The indispensable need of high- speed led to the 

shrinking of the devices which has been accompanied by short channel effects. The double-gate (DG) 

technology provided excellent short channel immunity and improved charge control in the channel. Wichmann 

et al. [3] fabricated a 100 nm InAlAs/InGaAs DG-HEMT using transferred substrate technique with the 

maximum extrinsic transconductance two times higher than a single-gate HEMT.  

As the device size scaling continues to nano-dimensions there is a requirement to model the quantum 

effects in these devices. In a double heterostructure DG-HEMT, there are two identical heterostructures forming 

symmetric double quantum wells, where it is assumed that electrons in each well can only have an in-plane 

motion, as the perpendicular motion is constrained due to quantization. Till now, DG-HEMTs have been 

analytically modeled with a semi-classical approach for sheet carrier density by treating the two 2-DEGs (two 

dimensional electron gas) independently with a charge control model neglecting the quantization effects 

dominating the entire channel [4]. As the de Broglie wavelength of an electron becomes comparable to the 

thickness of the quantum well the quantization effects cannot be ignored. This requires modeling the two 

quantum wells formed in double heterostructure DG-HEMT together. The formation of quantum sub-band 

levels comprising of discrete energy levels and consequently, the wavefunctions corresponding to the values of 

energy levels describes the quantum state of an electron, which ultimately explains the behavior of nanoscale 

double quantum wells as a system. 

In this paper, quantum modeling of a nano-dimensional channel for a 100 nm double gate 

InAlAs/InGaAs HEMT is presented. The double quantum wells are treated as a system and the 1D time-

independent Schrodinger equation is solved for the potential profile formed in the channel. The potential profile 

is approximated as double triangular quantum well separated by a barrier in the channel. The eigenenergies and 

the wavefunctions of an electron confined in the finite potential profile are calculated and studied in the 

equilibrium condition i.e. when no gate voltage is applied and also under various applied electric fields. From 

these wavefunctions, the electron concentration under various applied fields is evaluated and this is used to 

establish an interaction between the two quantum wells. 
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II. MODEL 
The schematic of InAlAs/InGaAs DG-HEMT with gate length 100 nm is shown in Fig. 1. As shown in 

the figure, there are two identical heterostructures in which both the donor layers are -doped and free electrons 

move from their donor sites to the undoped channel and are confined along the heterointerface on either side of 

the channel. The electrons from the wide bandgap (InAlAs) layer diffuse to the undoped InGaAs channel layer 

until equilibrium is reached with the Fermi level (EF) falling in line. This result in a band bending near the 

interfaces facilitating the accumulation of electrons in the DTQW formed in the channel. 

 

 
Fig. 1. Structure of InAlAs/InGaAs DG-HEMT. 

 

2.1 Potential Profile in Equilibrium  

The energy band-diagram for double heterostructures with two InAlAs/InGaAs junctions at equilibrium 

results in symmetric double triangular quantum wells separated by a barrier as shown in Fig. 2(a). The potential 

profile for this DTQW separated by a barrier at equilibrium is obtained using a 3-D ATLAS device simulator 

(version: 5.16.3.R) [5] and shown as solid lines in Fig. 2(b). The analytical model proposed uses an approximate 

potential profile V(z) as shown by dotted lines in Fig. 2(b) and defined as follows:  
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where, V0 represents the conduction band discontinuity and V1 is the height  of  the  barrier between the two 

quantum wells. The origin is taken at the centre, the barrier thickness and the width of each well are taken as 2a   

where „a‟ is one sixth of the channel width. 
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Fig. 2. Channel of DG-HEMT (a) Energy Band diagram for double heterostructures with symmetric double quantum wells. 

(b) Potential profile of a symmetric DTQW separated by a barrier formed in the channel at equilibrium. 

 

Since the potential profile is symmetric about the z=0 axis, it is sufficient to consider only the region

az 30  . The one dimensional time-independent Schrodinger equation for the region az 30   can be written 

as follows: 

 

2.1.1 For one half of the barrier i.e. az 0 : 
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where   is the wavefunction,  EzVmk  )(]/2[ 2*2  , E is the energy eigenvalue,  is the reduced Planck 

constant, m
*
 is the effective mass of the electron.  

 

2.1.2 For the regions aza 2  and az 2 : 

The Schrodinger equation reduces to the Airy equation: 
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The solutions of (3) are the Airy functions with the respective   as their argument. 

 

2.1.3  Symmetric Solutions  

 The wavefunction s for the symmetric state will have a solution as follows: 

















azAiC

azaBiDAiC

azkzC

z

sVs

sIVssIVs

s

s

2),(

2),()(

0),cosh(

)(

3

22

1

         (6) 

 



Modeling Quantum Effects In The Channel Of A Nanoscale Symmetric Double Gate InAlAs/InGaAs 

www.iosrjournals.org                                                     23 | Page 

where Ai and Bi are the regular and the irregular Airy functions and the variables sIV and sV correspond to the 

symmetric case. The boundary conditions for continuity of s  and dzd s /  at z=a and z=2a, lead to the 

following determinant for the four homogenous equations in Cs1, Cs2, Ds2 and Cs3: 
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For non trivial solutions, the determinant in (7) has to be zero giving the eigenvalue equation which can be 

solved to obtain the values of E. 

 

2.1.4  Antisymmetric Solutions   

Similarly wavefunction for antisymmetric state )( as is obtained as: 
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The boundary conditions for continuity of as  and dzd as /  at z=a and z=2a, lead to the following determinant 

for the four homogenous equations in Cas1, Cas2, Das2 and Cas3:
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where a
asIV  is azasIV  , a

asIV
2  is azasIV 2  and a

asV
2  is azasV 2 . 

 

2.2  Potential Profile under applied Electric Field 

The Schrodinger equation for the DTQW system separated by a barrier under an applied electric field 

as shown in Fig. 3 is given by: 
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where the effective potential Veff (z) is given by: 
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where e is the electron charge. 
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Fig. 3. Potential profile of DTQW separated by a barrier formed in the channel with applied electric field. 

 

Redefining variable   in the regions: I )2( az  , II )2( aza  , III )( aza  , IV )2( aza  , and 

V )2( az  as: 
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Equation (11) reduces to the Airy equation (3) whose solutions are the Airy functions with the respective  as 

their argument. So, the wavefunction )(z may be written as: 
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The boundary conditions at aaz 2,  leads to eight homogenous equations for the coefficients Cj (j=1-5) and Dk 

(k=1-5) which can be written as: 
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where M1, M2, M3 and M4 are 2x2 matrices given by: 

 

               

               



















































































a
II

a
I

a
I

a
II

a
II

a
I

a
II

a
I

a
II

a
I

a
II

a
I

a
II

a
I

a
II

a
I

iABiiBAi
K

K
iAAiAiiA

K

K

BiiB
K

K
iBBiBiiA

K

K
iBAi

M
2222

2

12222

2

1

22

2

12222

2

122

1 (19)    

V
e
ff
(z

) 
(e

V
)

z (nm)

(-3a)   (-2a)     (-a)      0        (a)      (2a)     (3a)    

with electric field

barrier

III
II

I

IV

V



Modeling Quantum Effects In The Channel Of A Nanoscale Symmetric Double Gate InAlAs/InGaAs 

www.iosrjournals.org                                                     25 | Page 

               

               


















































































a
II

a
III

a
II

a
III

a
III

a
II

a
III

a
II

a
III

a
II

a
III

a
II

a
III

a
II

a
III

a
II

BiiAiBAi
K

K
iAAiAiiA

K

K

BiiB
K

K
iBBiBiiA

K

K
iBAi

M
----

4

3----

4

3

4

3

4

3

2  (20) 

 

               

               















































































a

III
a

IV
a

III
a

IV
a

IV
a

III
a

IV
a

III

a
IV

a
III

a
IV

a
III

a
IV

a
III

a
IV

a
III

BiiAiBAi
K

K
iAAiAiiA

K

K

BiiB
K

K
iBBiBiiA

K

K
iBAi

M

6

5

6

5

6

5

6

5

3

 

 (21) 

 

               

               















































































a

IV
a

V
a

IV
a

V
a

V
a

IV
a

V
a

IV

a
V

a
IV

a
V

a
IV

a
V

a
IV

a
V

a
IV

BiiAiBAi
K

K
iAAiAiiA

K

K

BiiB
K

K
iBBiBiiA

K

K
iBAi

M
2222

8

72222

8

7

22

8

72222

8

722

4





  (22) 

 

where azi
a

i 2
2
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a
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The eigenvalue equation is obtained by taking C1=1 and D1=0 in the following equation and is used to 

obtain eigenenergies: 
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2.3  Carrier Concentration in the Channel  

The electron concentration in the channel at various fields is calculated using the following expression 

[6]: 
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where K is the Boltzmann constant, T is the room temperature and Ep is the p
th

 energy level.  

 

III. RESULTS AND DISCUSSION 
This work presents a quantum modeling of carrier distribution in symmetric DTQW structure separated 

by a barrier, formed by two similar heterostructures in a InAlAs-InGaAs-InAlAs DG-HEMT. 1D-Schrodinger 

equation is solved as described in section-II and numerical calculations using Newton-Raphson technique 

carried out for calculating eigenvalues and the wavefunctions. The values of material parameters for symmetric 

double heterostructure In0.52Al0.48As/ In0.53Ga0.47As DG-HEMT used in the calculation are as follows: effective 

mass of In0.53Ga0.47As, m
*
=0.033*mo [7], where mo is the electron rest mass, channel thickness=20 nm, quantum 

well and barrier thickness = 6.6 nm, Vo=0.5 eV [8] and V1=0.045 eV. 

The symmetric potential profiles of DTQW under equilibrium and at various applied electric fields 

represented in Fig. 2(b) and Fig. 3 respectively are solved and the eigenvalues thus obtained are presented in 

Table I. At equilibrium both E0 and E1 are less than the Fermi level (EF ≈ 0.17 eV) [9] suggesting that mainly 

these two states are occupied by the electrons and hence are main contributors to the electron concentration in 

the channel.  

 

 

 

 



Modeling Quantum Effects In The Channel Of A Nanoscale Symmetric Double Gate InAlAs/InGaAs 

www.iosrjournals.org                                                     26 | Page 

TABLE I 

 EIGENENERGIES WITH DIFFERENT ELECTRIC FIELDS 

S.No. Electric Field „F‟(V/m) E0 (eV) E1(eV) 

1. 0 0.0689 0.1504 

2. 2x10
6
 0.0683 0.1506 

3. 5x10
6
 0.0649 0.1518 

4. 7.5x10
6
 0.0602 0.1532 

5. 10x10
6
 0.0539 0.1548 

6. 12.5x10
6
 0.0465 0.1563 

7. 15x10
6
 0.0380 0.1575 

 

The corresponding wave functions (ψ0(z)) and (ψ1(z)) at equilibrium are shown in Fig. 4. It can be 

observed that the probability of occupation of the ground state is higher in the barrier region than in the two 

wells in the absence of any external field. Thus signifying that the electron concentration in the channel has a 

Gaussian profile and the electrons are no more confined at the two interfaces. Thus, indicating that the DTQW 

behaves like a single quantum well and the two wells cannot be treated in isolation. 

 

 
Fig. 4. The ground and first excited DTQW states wave functions at electric field=0. 

 
Fig. 5. The behaviour of the ground excited DTQW state wave function, ψ0(z), under various applied electric fields. 

 

The wavefunctions ψ0(z) and ψ1(z) at various transverse electric fields are sketched in Fig. 5 and Fig. 6 

respectively. It can be seen from Fig. 5 that as electric field increases, ψ0(z) keeps on increasing in the well 

closer to Gate1(held at 0V) and decreases in the well which  is  closer  to  Gate2 (at negative potential). So, the 

probability of occupancy for an electron is shifting towards the interface which is closer to the gate with higher 

voltage or to the deeper well. The shift in the wavefunction is taking place due to the tunneling in DTQW 

system. Similarly, Fig. 6 also shows the shift of ψ1(z) with different applied electric fields. Shifting away of the 

wavefunction from the interface closer to Gate2 (at negative voltage) indicates that the presence of electric field 

can initiate a tunneling between the two wells through the barrier region. 
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Fig. 6. The behaviour of the first excited DTQW state wave function, ψ1(z), under various applied electric fields. 

 

Fig. 7 shows a comparison of the electron concentration profile calculated at equilibrium with the 

simulated results obtained from Quantum moments model and also with a semi- classical model (drift-diffusion 

model) available in 3D ATLAS Device Simulator. As can be seen from the figure, the analytical electron 

concentration profile shows a good match with the simulated quantum model and thus validating the proposed  

model. Also, the peak electron concentration is not at the interface in the quantum model as compared to semi-

classical model [10] indicating the merging of the two wells into one.  

 

 
Fig. 7. Comparison of Electron concentration in the channel at equilibrium. 

 

The electron concentration calculated at different applied electric fields is shown in Fig. 8. It is 

observed that the electron concentration shifts from one side of the channel to the other with applied field. The 

differential gate voltage, where Gate1 is maintained at 0 V and Gate2 at different operating negative voltages, 

divided by the channel thickness results in a positive field „F‟ in the positive z direction. This positive electric 

field in the positive z direction pushes the electrons in the negative z direction, and so the potential energy of the  

electron increases in the positive z direction. This causes shift of electrons away from the interface closer to 

Gate2 and towards Gate1. The two gates control the electron confinement between the two wells. Shifting of 

electrons from one interface to the other indicates existence of coupling between the two TQW, which cannot be 

treated independently and must be solved as a combined system. 

 

 
Fig. 8. Electron concentration under various applied electric fields. 
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IV. CONCLUSION  
Nano-dimensional symmetric InAlAs/InGaAs double heterostructure DG-HEMT are promising 

devices due to their larger carrier concentration and high cut off frequency. The essential results imply that the 

DTQW in the nanodimensional channel behave like a single triangular quantum well and thus the two wells 

cannot be treated independently. The eigenvalues obtained from the proposed quantum model at equilibrium are 

E0=0.0689 eV and E1=0.1504 eV. The results show a shift in the wavefunctions from one well to the other 

depicting an interaction between the two quantum wells. The ground state wavefunction shifts to the deeper well 

under an applied field or towards the gate which is at a higher gate voltage while it remains symmetric at 

equilibrium in the two wells. Further, the electron concentration profile in the channel illustrates the distribution 

and tunneling of electrons under various applied transverse electric fields which establish a correlation or 

merging of the two quantum wells, making it imperative to account for quantum effects in double 

heterostructure high speed nano-devices.  
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