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Abstract: A full-order observer-based state feedback linear controller design approach for a single area load 

frequency problem is presented. The load frequency control model incorporates integral control for improved 

command tracking response and disturbance rejection. A full state feedback is implemented through full-order 

state observer design. State feedback with integral controllers design is carried out through a pole-placement 
technique using symmetrical root locus method. Parametric model uncertainty has been considered and stability 

robustness study has been carried out assigning a bound on the deviations in parameters of single area load 

frequency model. The proposed design methodology achieves performance satisfying the specified stability 

margins. The methodology provides a control over peak values of the frequency and control signal deviations 

which may be utilized to meet hardware constraints. A numerical example illustrates the effectiveness of the 

developed methodology.   

Keywords: Load frequency control, Control area, Integral control, Full order state observer, Augmented 

system, MATLAB simulation. 

 

Notations 
 r0, r1, r2 roots of characteristic equation of observer 

 

 r 

 

reference signal or set-point 

 λ0, λ1, λ2 roots of characteristic equation of plant 

 

 ρ system weighting penalty from SRL equation 

 

 ρi weighting penalty assigned to system due to integrator 

 

 u control force/signal/input 

 

 Ts settling time, s 

 

 TH hydraulic time constant, s 

   

 TT turbine time constant, s 

   

 Tp generator/power system time constant, s 

   

 Kp proportional gain of generator/power system, puHz/Mw 

   

 R proportional speed regulation controller gain, puHz/Mw 

   

 x̂  
estimated  state variables 

 

 Ki integral gain 

 

 K (k1,k2,k3) feedback gains 

 

 e error signal 

 

 w Disturbance 

 

 s Laplace variable 

 

I. Introduction 

Fortunately and unfortunately, our system load demand PD and QD are never steady [10]. They keep on 

changing all the time throughout the day, month or year and the change is also random with time. Steam input to 

the steam-turbine and water input the hydro-generator must therefore be continuously regulated to match the 

active power demand, failing which the frequency (machine speed) will vary. Since the maximum allowable 
permissible frequency in India is ± 2.5%, so a constant match is going on between them to keep track of each 
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other to maintain constant frequency operation of the system which is 50 HZ. Also the excitation of generators 

must also be continuously regulated to match QD with reactive generation, otherwise voltages at various system 

buses may go beyond the prescribed limits. 
It is well known that three-phase alternating current (AC) is generally used to transport the electricity. 

Thus, during the transportation, both the active power balance and the reactive power balance must be 

maintained between generating and utilizing the AC power. When either of the two balances is broken and reset 

at a new level, the equilibrium points will float [5]. A good quality of the electric power system requires both 

the frequency and voltage to remain at standard values during operation. 

However, the users of the electric power change the loads randomly and momentarily. Thus, a control 

system is essential to cancel the effects of the random load changes and to keep the frequency and voltage at the 

standard values. Although the active power and reactive power have combined effects on the frequency and 

voltage, the control problem of the frequency and voltage can be decoupled into two independent problems. One 

is about the active power and frequency control while the other is about the reactive power and voltage control. 

The active power and frequency control is referred to as load frequency control (LFC) [8]. The latter is known 
as automatic voltage regulator (AVR) [1]. The two control loops does not interfere with each other due to the 

fact that relationship between them in very weak. That is, the time constant between them is entirely different, 

former is a faster control and the latter is a slower one [10]. 

The present work attempts to utilize full state feedback for single area load frequency controller design. 

The control objective is to develop a procedure for designing state feedback and integral controllers for a given 

plant conditions, the specifications set as: 

(i) No deviation in frequency in steady-state for a step change in load demand. 

(ii) Critical gain and phase margins must be greater or equal to the specified GM and PM. 

 

It is assumed that the load frequency model parameters (i.e. R, TH, TT, Tp and Kp) are given, output ( f) 

is available for feedback. State feedback has potential to improve the performance of the load frequency by 

judicious choice of closed-loop pole locations. A full state observer has been constructed to meet the 
performance requirements and iterative design steps are required to ensure satisfactory operation. The LFC 

model incorporates integral control for improved command tracking and to enhance disturbance rejection 

capability for the proposed control scheme. Moreover, a realistic LFC system having uncertain variations in 

parameters from their nominal values will be characterized by deviations in the nominal values of LFC 

parameters (TH, TT, Tp, H, D). In this paper, the parametric model uncertainty has been considered, which 

represents imprecision of the parameters within the model. The observer-based closed-loop plant stability 

robustness studies have been carried out assigning a bound on the deviations in LFC system. Numerical results 

are presented to demonstrate the efficacy of the proposed control design procedure and to evaluate the 

performance and robustness qualities of the controller. 

 

II. Plant Model 
Single  area  power system consists of a governor, a turbine  and  a  generator  with  feedback  of  

regulation constant. System also includes step load change input to the generator. This work mainly related with 

the controller unit of a single area power system. Figure 1 shows the block diagram of an uncontrolled isolated 

power system. The state variable model for the system [1] is 

 

x Ax Bu

y Cx

 




                                                                                                                                                     (1) 

 

With disturbance w Equation (1) reduces to 
 

1
x Ax Bu B w

y Cx

  




                                                                                                                                               (2)       

 
where                                
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Where A is system matrix,  B is input distribution matrix, B1 is disturbance distribution matrix, x is  state vector, 

u is control vector and  w is disturbance vector of load changes. 

 

 
Figure 1: Model of an isolated single area power system. 

 

III. Proposed Control Scheme 
When the system is subject to uncontrolled disturbances w due to plant parameter variations (system 

uncertainties), it is useful to augment the state vector with an extra state variable, the integral of the error signal. 
The essence of the integral control action is to reduce the frequency deviation to zero.  

 

 
Figure 2: Block diagram for observer with integral control scheme. 

 
For the system described above in Equation (2), the integral action attenuates the steady state error due to the 

uncontrolled disturbance: 

 

I
x e r y r Cx      

Thus, 

0

t

I
x edt   

The augmented state equation [3] becomes  

 

1

00 0 1

0 0

I I
x xC
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BA Bx x

          
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and the feedback law is 

  I

i

x
u K K

x

 
   

 
 

The choice of Ki should be such that it should be neither too small nor too large. The integral controller is 

adjusted for a satisfactory transient response. 

IV. Full Order State Observer design 
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The design procedure of a linear observer rests on the proper choice of set of matrices with constant 

elements which determine its performance characteristics [11]. A third-order Luenberger's full state observer [7] 

is employed to produce the estimates of three state variables x1, x2 and x3 of the single area power system driven 
by the available state variable, which is assumed to be available for direct measurement x3 and input u having a 

describing equation of the form 

 

z Dz Cx Gu                             (3) 

The observer state is 
1 2 3[ ]Tz z z z . The observer dynamics is governed by the eigen values of observer system 

matrix 

0 1 2

0 1 0

0 0 1D

r r r

 
 


 
    

which has constant elements and connection matrix 

1

2

3

g

G g

g

 
 


 
  

. For zero initial 

conditions, the observer in Equation (3) observes system Equation (1) in a linear manner as per equation 

11 12 13

21 22 23

31 32 33

t t t

z Tx t t t x

t t t

 
 

   
 
 

, where T is the transformation matrix with constant elements. The Luenberger's 

compatibility conditions to be satisfied [4] in the design of the observer are 

 

TA DT C                                                                                                                                                          (4)   

 

G TB                                                                                                                                                                 (5) 

    

The observer poles has to be slightly faster than the controller poles [3] so that the error becomes zero 

after a short time period. Thus, the eigen values of D-matrix are chosen with sufficiently large negative real 

parts compared to that of system poles. In our design approach, the eigen value of observer is taken 7 times of  

eigen values of A BK( ) .  

 

Thus for known values of elements of A and B matrices, the elements of T matrices are obtained from Equation 

(4) using MATLAB program under any operating condition. 
 

Using Equation (5) 

 

1 1 11

2 2 21

3 3 31

g b t

G TB g b t

g b t

   
   

     
      

                                                                                                                                       (6) 

 

The required estimates may be constructed from Laplace transform of Equation (3) 

   
1 1

z s SI D Cx s SI D Gu s
 

   ( ) ( ) ( )  and is given by 1x T z sˆ ( ) , which is written as 

 

11 12 131 1

2 21 22 23 2

3 331 32 33

m m mx z s

x m m m z s

x z sm m m

    
    

     
        

ˆ ( )

ˆ ( )

ˆ ( )

                                                                                                                              (7) 

 

or 
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where 

2 1 0 02 1 0 2 1 0 02 1 0 2 1 0 02 1 0o o o o o o o o o o o o o o o
a a a b b b c c c d d d e e e f f and f, , , , , , , , , , , , , , , , are the coefficients of the 

observer and 
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Thus from the light of power system control model shown in Figure (2) and observer design, block diagram of 

Figure (3) is deduced.  

 

 
Figure 3: Observer-based full state feedback with integral control. 

 

V. Closed-loop Pole Locations 
The main objective of optimal regulator or controller design known as linear quadratic regulator (LQR) 

is to define the performance index (cost function) J and search for u=-Kx that minimizes this index to stabilize 

the system (i.e. to transfer the system from its initial state to final state such that a given performance index is 

minimized). 

Consider the system x Ax Bu  . The objective is to find the feedback K of control law such that the 

performance index 2 2

0

J y t u t dt



  ( ) ( )  

is minimized for the system (A, B). Here the optimal value of K is that which places the closed poles at the 

stable roots of the symmetric root locus equation [3] 

 

1 0G s G s  ( ) ( )                           (9)              

         

In standard form  

1 0
N s N s

D s D s


 



( ) ( )

( ) ( )
  

Where G(s) is the open loop transfer function 

 

1y s N s
G s C SI A B

u s D s

   
( ) ( )

( ) ( )
( ) ( )

 

and ρ represent weighting penalties on the state variables and control inputs and is chosen by the designer. The 

controller’s performance highly depends on the choice of the weighting factor ρ. Wrong choice of these may 

result to the frequency and power oscillating during disturbances. In reality, choosing different values of ρ can 

provide us with pole locations that achieve varying balances between a fast response and a low control effort. In 

practice, usually a value of ρ corresponding to a point close to the knee of the trade-off curve is chosen. This is 

because it provides a reasonable compromise between the use of control and the speed of response. 

 

VI. Stability Analysis 
The open loop transfer function of the proposed system is obtained by opening its forward path and is 

solved by Mason’s Gain formula for signal flow graph [2]. We consider two loops in our design approach to 

establish the stability margin in terms of open-loop gain responses. This is in-fact the ability of proposed system 
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to deal successfully in-case of model uncertainties. The system is stable when gain values are increased but it 

may become unstable if the gain increases past a certain critical limit.  

Two cases are to be compared in this section, that is by opening the closed loop system of Figure 3 at 
X1 (inner/internal loop) and at X2 (outer/external loop).   

 

The transfer function of inner loop 
3 2

1 2 3
X 1 7 6 5 4 3 2

1 2 3 4 5 6 7 8

N S + N S + N S + N4
G ( s )

D S + D S + D S + D S + D S + D S + D S + D
                    (10) 

where, 

N1 = B2KpR + Ki KpR, N2 = B1KpR + Kir2KpR, N3 = B0KpR + Kir1KpR, N4 = Kir0KpR, 

D1 = RH2, D2 = RH2r2 + RH1 + RH2A2, D3 = RH2r1 + RH1r2 + RH0 + RH2A1 + RH1A2 

D4 = RH2r0 + RH1r1 + RH0r2 + R + Kp + RH2A0 + RH1A1 + RH0A2 

D5 = RH1r0 + RH0r1 + Rr2 + Kpr2 + RH1A0 + RH0A1 + RA2 + KpA2 

D6 = RH0r0 + Rr1 + Kpr1 + RH0A0 + RA1 + KpA1, D7 = Rr0 + Kpr0 + RA0 + KpA0, D8= 0 

 

The transfer function of outer loop 
3 2

1 2 3
X 2 7 6 5 4 3 2

1 2 3 4 5 6 7 8

N S + N S + N S + N4
G ( s )

D S + D S + D S + D S + D S + D S + D S + D
                                                                      (11) 

where, 

N1 = Ki KpR, N2 = Ki KpRr2, N3 = Ki KpRr1, N4 = Ki KpRr0 

D1 = RH2, D2 = RH2r2 + RH1 + RH2A2, D3 = RH2r1 + RH1r2 + RH0 + RH2A1 + RH1A2, 

D4 = RH2r0 + RH1r1 + RH0r2 + R + Kp + RH2A0 + RH1A1 + RH0A2 
D5 = RH1r0 + RH0r1 + Rr2 + Kpr2 + RH1A0 + RH0A1 + RA2 + KpA2 + KpRB2 

D6 = RH0r0 + Rr1 + Kpr1 + RH0A0 + RA1 + KpA1 + KpRB1, 

D7 = Rr0 + Kpr0 + RA0 + KpA0 + KpRB0, D8= 0 

and 

A2 = ao2k1 + co2k2 + eo2k3, A1 = ao1k1 + co1k2 + eo1k3, A0 = ao0k1 + co0k2 + eo0k3, 

B2 = bo2k1 + do2k2 + fo2k3, B1 = bo1k1 + do1k2 + fo1k3, B0 = bo0k1 + do0k2 + fo0k3, 

H2 = THTTTp, H1 = THTT + THTp + TTTp, H0 = TH + TT + Tp 

 

Two commonly used quantities that measure the stability margin for such system are the gain margin 

(GM) and phase margin (PM). This is discussed in next section with respect to Bode plots of GM and PM. 

 

VII. Simulation and Results 
With an objective to meet the specifications GM ≥ 6 dB, PM ≥ 40 degree and no frequency deviations 

in the steady-state, a full state observer with integral control has been designed for the LFC model. A typical 

operating condition has been chosen as the nominal values of the parameters of the LFC model are shown in 

Table 1. A deviation of ± 10% on the nominal values of the parameters of LFC model has been considered for 

investigation of stability issues of the designed control scheme in Figure 3 for LFC model.  

The closed-loop pole (CLP) locations have been chosen from the SRL plot for the equation (9) as 

shown in Figure 4. The closed-loop integrator pole location is given by s = -ρi. With the help of three closed-

loop poles from SRL plot and one properly selected closed-loop integrator pole, feedback gain constants Ki, k1, 

k2 and k3 are obtained using augmented state model.  
 

The third-order observer has been designed with its pole locations are at seven times the controller pole 

locations (obtained from SRL plot) to determine D-matrix. The matrices T, G and M have been determined 

using Equations (4 ), ( 6) and ( 8) respectively.  

The open-loop transfer functions GX1(s) and GX2(s) have been determined using equations (10) and (11) 

respectively for stability margins analysis. Figure 5 indicates the variations in GM and PM at X1 with ρ for 

various values of ρi. It is observed that the GM and the PM remain almost constant with ρ in the higher range, 

but they vary appreciably with ρi. The critical PM occurs corresponds to loop opening at X1. In this paper, 

ρ=600 and ρi =7 have been selected to satisfy GM ≥ 6 dB and PM ≥ 40 degree. Table 2 shows the closed-loop 

pole locations and controller gains.  

The results of performance studies obtained by MATLAB simulations for the selected operating points 
are provided in Table 3 and 4. The results describing the disturbance rejection property for various load demand 

changes have been shown in Figure 6.    

 

Table 1: Area parameter values 
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Area Parameter R (puHz/Mw) 

 

 

TH (sec.) TT (sec.) Tp (sec.) Kp (puHz/Mw) 

Nominal value 

 

2.4 0.08 0.3 20 120 

Nominal value 

+10% 

 

2.64 0.088 0.33 20 109 

Nominal value -10% 2.16 0.072 0.27 20 133 

 

Table 2: Closed-loop pole locations and associated gains. 
CLP for 

 

CLP locations Observer poles Controller gains 

ρ=600 

ρi =7 

λ2= -20.06 

λ1= -9.68+14.54i 

λ0= -9.68-14.54i 

r2 = −276.05 

r1 = −34000.55 

r0 = −2100753.59. 

 

Ki =171.49 

k1 =2.44 

k2=19.78 

k3= 43.32 

 

 

Table 3: Result of frequency response studies on proposed system. 
Loop break at 

 

Perturbation 

 

PCF (rad/sec) 

 

GM (dB) 

 

GCF (rad/sec) 

 

PM (deg) 

 

X1 Nominal 

+10% 

-10% 

96.12 

87.56 

106.46 

11.85 

11.72 

11.99 

25.86 

23.81 

28.32 

41.16 

40.91 

41.45 

X2 Nominal 

+10% 

-10% 

15.38 

14.18 

16.82 

12.14 

11.80 

12.54 

3.92 

3.76 

4.10 

69.96 

69.18 

70.84 

 

Table 4: Settling time at varying load demands. 
Load demand 

 

Perturbation 

 

Settling time (sec) 

 

Maximum variation in 

frequency (Hz) 

10% Nominal 

+10% 

-10% 

0.392 

0.426 

0.358 

4.02e-004 

5.3e-004 

2.49e-004 

20% Nominal 

+10% 

-10% 

0.393 

0.427 

0.358 

8.02e-004 

10.6e-004 

4.99e-004 

 

 
Figure 4: Symmetrical root locus diagram with selected closed-loop poles. 
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Figure 5: GM and PM of the open-loop system at X1 under varying values of ρ and ρi. 

 

 
Figure 6: Frequency responses under parameter variations. 

 

Figure 7 shows the frequency deviations for the various load demands. That is, the control effort 
increases with increase in ∆PD, thus for a certain  higher value of ∆PD, actuator can saturate [9]. 

Figures 8 denotes the dynamic response of the observer estimates. This in-fact shows the ability of the 

proposed strategy, that it is capable of measuring all the states (unknown and known). Thus, the need for sensors 

are eliminated, which are otherwise costly or may be noisy. The deviation in V T
ˆ ˆP and P   are observed between 

the observed and the actual values.  
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Figure 7: Dynamic response of system under varying values of load demands. 

 

 
Figure 8: Dynamic responses of observer estimates. 

 

VIII. Conclusion 
Implementation of full state feedback offers a scope for design trade-off between speed of response and 

the capabilities of hardware resources, assuring desired stability performance quality. It may be possible to fully 

utilize the capability of actuator, as the proposed method provides some control over peak values of ∆f, ∆PV and 
∆PT. The proposed design methodology provides a systematic analysis and design steps in order to achieve 

desired performance for the observer-based LFC. At the expense of some additional computational burden for 

the observer system, the proposed method is inexpensive to implement requiring no additional sensors. The 

observer has been incorporated in terms of transfer functions in order to carry out stability analysis easily.  The 

robust disturbance rejection capability and maintaining stability in the face of model parametric uncertainties 

have been demonstrated by the numerical examples. 

The present linear analysis does not take into account the effects of various non-linearities and delays 

introduced by sampling and computation. However, control gains obtained by the proposed design may be used 

as initial guess values in presence of non-linearities.  
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