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l. Notation And Definitions:
Notation and definitions.

Let M be a Riemannian Banach manifold of class C' (r > 3,0), modeled on a Banach space E [2].

The symmetric bilinear positive definite continuous functional f € L,(E;IR)is said to be strongly

non-singular [2], if f associates a mapping ™ :X e E — fx* = f(x,.) € L(E;IR) = E” which is bijective.
Also, let g be the metric tensor on the space M , of class C"™. we assume that g is strong non-singular [2 ].
By Vg, ., we denote the covariant differentiation of the tensor g at the point X € M. Finally, by

D g_ we mean the Frechet derivative of the metric .

X

2. Locally plane Riemannian Banach manifolds.
Since M is a Riemannian manifold, then on M there exists a unique torsion-free connectionI” [ 2]

of class C"?, such that: V g =0.
Definition (2.1) [ 2 ]: A Riemannian Banach manifold M is called locally plane space, if for all

XeM, there exists a chat c=(U,®,E)at the point X, such that I, =0, for all

X=®(X)e PU)c=E. Where X and I are the models of the point X and the connection T with respect
to the chart c, respectively.

Lemma (2.1): The metric tensor g of a Riemannian Banach manifold M, which is locally plane, is a
constant tensor field [4].
Now, we assume that N <M is a submanifold of M of the same class[1]. Let

i:xeN —>i(x)=XxeM, be the inclusion map. Let ¢ = (U, D, E) be a chart at the point Xe N = M
on the space M ,and d = (V, ¥, F) is a chart at the point X € N < M on the space N .
If Z=®d(x)and P =¥(X)are the models of the point X with respect to the charts Cand d,

respectively. Also, if 1 is the model of the mapping i with respect to the charts Cand d , then we have that:
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iP=¥(X)e¥V)cF >i(P)=Z=d(x) e dU) c E.
This equation is called the local equation of the submanifold N in a neighbourhood of the point

X € N with respect to the charts Cand d .

Now, since (M, Q) is a Riemannian manifold, then N < M , will be a Riemannian submanifold of
1

M with respect to the induced metric tensor g such that [2]:

g (%.%.) = Gy (T,1(%). T i(x,)), @

for all Xxe N, X1,X2 €T_N (the tangent space of N at the point X). Also, we have that
X

T;i :T_N — T_M, is the tangent map of the map I at the point X [1].
X X
-1

Similarly, we assume that the metric g is strong non-singular. If X, and X, are the models of the
vectors X, and X2 with respect to the chartd , then the models of these vectors with respect to the chart C
will be: Y, = Di (X,),Y, = Di; (X,), respectively. Hence, the local form of the equation (2.1) takes the
form:
1
9, (X1, X5) = Gy (DI (Xy), D (X5). (2.2)

Also, with respect to the Riemannian submanifold N , there exists & unique torsion-free connection

', such that[2]:
vlgl — 0
- -1
We assume that ['and T are the models of the connections T and T with respect to the charts
cand d, respectively.
In [3], the first derivative equation of the submanifold N is established in the form:

12
VDip(xl’XZ)=np(Ap(x17X2))’ (2.3)

where, N: X =y (X) ew (V) c F —n,_e L(W;F.) is an isomorphism of class C"™ and FXL
is the orthogonal complement of the space F at the point X € F.

1,2
Also, the space W' is isomorphic to the space (T_ N)L . Finally, V is the mixed covariant differential
X

operator defined on the tensors of the space N, and Aj € L,(F;W) is the second essential form of the

space N .
1,2
Also, the space W is an isomorphic to the space (I',N)l. Finally, V is the mixed covariant
X
differential operator defined on the tensors of the space N , and Ap e L, (F;W) is the second essential form

of the space N .
In [4], it is proved that there exists a chart C = (U, ®, E) at the point X € N , such that the relation

between the metric tensor § and the connection T is given in the form:
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1
9, ([ (X1, X3), X5) = 2[DG, (X25 Xy, X3) + DG, (X1 X5, X3) = DY, (X3 Xy, X5)],

Forall x=®(X) e ®(U)cE, X, X,,X; € E . Where g, and T, are the models of the metric
tensor §; and the linear connection l:x with respect to the chart C in the above relation respectively.
Now, assume that 5' , is another Riemannian metric function on the space M .

Definition (2.2) [ 2 ] : The two functions 5 and 6 are conformal, if there exists a mapping

J7K xeM - ,u()_() € IR, such that:
!
g x = u(x).9;, (2.5)
forall X e M.
Definition (2.3) [4]: The Riemannian Banach manifold (M, Q) is called locally plane, if there exists

on M alocally plane metric g', conformal to g such that:

_ A(x) - _ _ . _
g =-e.g., R =0, forall Xxe M, where R " is the curvature tensor of the space (M, Q’)at the
; X X X

point ; .

Lemma (2.2) [ 2] : Let H be a vector space with a bilinear and strong non-singular operator g [2],
such that dim H > 3. Then, in the space H , we have that:
i- There exist two arbitrary vectors S,W and a vector Z , which is linearly independent with them;

ii-There exists a vector X , perpendicular to the vectors S,W and Z with respect to the metric (J such that

X is linearly independent of these vectors.
Now, we consider the following theorem:

Theorem (2.1): The necessary and sufficient condition for a Riemannian Banach manifold M with a
strong non-singular metric g, to be locally plane, is to find a symmetric tensor P (X,Y) of type (0,2) on the
space M , such that the following conditions are satisfied:

R(X,Y,Z)=P. (¥,X).Z+g_(X,Y)3(2), 2.6)

vp (X:Y.2)=0, 27)

Where 5‘()_() is a tensor of type (1,1), is a solution of the equation:
P (X,Y)=g(Y,5(X)) (28)

Furthermore, when dim M > 3,we can show that, the condition (2.7) is a direct result, of the

condition (2.6).

Remark (2.1) In equations (2.6) and (2.7), there exists an alternation with respect to the underlined
vectors, that does not involve division by 2. This convention will be used henceforth.
Proof: It is sufficient to prove this theorem, locally, with respect to an arbitrary chart.

Necessity: We assume that C = (U, D, E) is a chart at the point X € M such that g,I" and R are the

models of g,I"and, R respectively with respect to this chart.
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Also, assuming that, the Riemannian Banach manifold (M, Q_J) is locally plane. Then there exists a locally
plane metric é',conformal to (:_J, such that:

9= lg)-gx , R, =0, (2.9)

forall X = (D()_() € ®(U) c E. Therefore, we obtain:

g, (X, (Y,2)) = 2[Dg, (¥; X,2)+ D, (Z;Y,Y) - Dg, (X;Y, 2]

Applying (2.9) in this last equation, yields:

A(X) A(X)
g'x<x,r'x(v,2)):§[e Dg, (Y:X,Z)+ & DA, (Y)g,(X,Z)+
A(x) A(x)

e D9, (Z;Y,X)+ e DA, (2). 9,(Y,X) -

A(x)

A(X)
e D9, (X;Y,Z)- e DA, (X).g,(Y,2).

=6 129, (X T, (1,2) + 2 (D2, (0.9, (X,2)+

But, from equation (2.9), we have:
A(x)
g, (X, ", (Y,2)) = e .g,(X,I[", (¥,2)). (211)

Using equations (2.10) and (2.11), we get:
9, (X, I"(Y, 2)) = 9, (X, I (Y, 2)) +

1
Now, the function DA, : X € E — DA, (X) € IR s linear and continuous [1]. This means that
DA, € L(E; IR) = E*,where E* is the dual space of the space E. Hence, taking into account that the

metric 5 is strong non-singular, then there exists a vector B, € E such that:
9,.(X,B,)=DA4,(X), (2.13)

forall X € E.
Using equation (2.13) into equation (2.12), we get:

9,(X.I,'(Y,2)) = 9, (X, (Y. Z2)) +

%[D/”tx (¥).9,(X,2)+DA(2).9,(X,Y) - 9,(X,B,).9,(Y.2)] =

0, (X I(Y,2) +2[DA,(Y). 2+ DA, (2).Y - ,(Y.2) B,
Since, g is non-singular, we get:

[ (Y,2) =1, (,2) +5[D4,(Y)Z + DA,@). Y ~9,(Y,2)B,)) (214

But, the curvature tensor R' of the space M with respect to the linear connection I''_ takes the form [ 2 ]:

— X

R.(X;Y,Z)=DI(Z; X,Y) +T,'(T,'(X,Y),2), (2.5)

where R, "is the model of R with respect to the chart ¢ = (U, ®, E) at the point XxeM.
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Differentiating both sides of equation (2.14) in the direction of a vector Z , we have:

DI, (Z:X,Y) = DI, (Zi X Y) +5[D*4,(Z X)Y +

. (2.16)
D’4,(Z;Y).X -Dg,(Z; X,Y).B, -g,(X,Y).DB,(2)].
Another time, from equation (2.14), we can get:
I (I (X,Y),2) =FX(FX(X,X),Z)—%DﬂX(FX(X,Z))-X—
FD4,(X)D4,2)Y -2 9,(X V)T, (B, 2)+ @7
1 1 1
ng(X1Z)Dﬂ‘x(Bx)i'i'ng(xii)gx(Bx';)Bx _ng(rx(xii)a;)Bx'
Substituting from equations (2.16) and (2.17) into equation (2.15), we can obtain:
R,/(X;Y,Z)=R,(X;Y,Z) WL[%V(D/?LX (z; X)) -
1040 DA@)+59,(X,2) DA, BIY - @18)
1 1
ng(xii)[VBX(Z)_ng(Bx’;)Bx]
Now, if denoting:
o, (X) :%D}LX(X), (2.19)
PX(X,Y)=%V(D/1X(X,Y))—%D/lx(X).D}tX(Y)+
%gx(X,Y)-gx(BxyBx), (2.20)
we have:
P(XY) = Vo, (X:Y) = 0,(X)0, (V) + £ 0,(X.Y).,(B,.B,) ean
In this case, equation (2.18) takes the form:
R,/(X:Y,2) =R, (X;Y,2)+ P,(Z, X)Y +0,(X, Z).[2 VB, (Y) -

2 (2.22)

10,618, +£0, (.8

Using 9, as a solution of the equation:
9.(X,6,(Y)) = B(X,Y), (2.23)
then considering equations (2.20) and (2.23), we get:
1 1 1
0,(X,8,(1) = P,(X,Y) = S V(DA(Y: X)) =5 DA(V) DAX) +5,(Y, X).0,(B,.B,). 229

From equation (2.13), we have:

VDA, (Y;X)=Vg,(Y;X,B,) = g,(X,VB,(Y)).
Applying this last equation into equation (2.24), yields:
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gX(Y,rSX(X»=%gX(Y,VBX(X»—%DA(X).g(Y.BX)+%gX(Y,x).gX(BX,BX),

and since g is non-singular, we obtain:

0,(X)= %VBX(X) —%gX(X ,B,).B, +%gX(BX, B,).-X. (2.25)
Now, from equations (2.22) and (2.25), it is clear that:
R'(X;Y,Z)=R(X,Y,Z)+P/(Z,X)Y +9,(X,2).5,(Y). (2.26)
Putting R, '(X;Y,Z) =0, into equation (2.26), we have:

R,(X;Y,Z) =P (Y, X).Z +0,(X,Y)5,(2). (2.27)

This means that, the equality (2.6) in the theorem, is satisfied.
By covariant differentiation of equation (2.19), locally with respectto Y € E , we get:

Va,(Y;X) :%[DZ/IX(Y; X) = DA, (T, (Y, X)].

From this equation, we get:
Vo, (Y;X)=0. (2.28)
Using equations (2.21) and (2.28), we have:

P, (X,Y) =0, this means that, the tensor |3; (Y,V) is symmetric. Furthermore, from equation (2.21) we
get:

Vo (Y,2)=P.(Y,2)+ o, (Y).o/(Z) —%gX(Y,Z).gX(BX, B,). (2.29)
Covariant differentiation of equation (2.29) locally with respectto X € E yields:

V(Va,)(X:Y,Z) = VP, (X:Y,Z)+Va, (X;Y).o,(Z)+

wx(v).wa(x;Z)—gwx(X:v,Z>.gx<Bx,Bx)—

1
ggx(Y!Z)Vgx(X’ Bx’ Bx)
Using equation (2.29) into this last equation, we have:

ViVao,)(X;Y,Z)=VP (X;Y,Z2)+Vao,(X;Y)o,(Z)+

a)x(Y)[PX(X!Z)+a)x(X)wx(z)_%gx(xlz)gx(Bx’ Bx)]_

%gX(Y,Z)gx(Bx'VBX(X))

Applying the alternation convention with respect to the vectors X,Y and using Ricci's identity [ 1],
we obtain the condition of complete integration of equation (2.29) as follows:

VP,(XiY.2) + 0, (1) R(X,2) - £ 0,(1).9,(X.2)0,(B,.B) -

£9.00,2).9,(B,,VB,(X)) + 0, (R, Z:Y, X)) =0. 230)
Now, using equations (2.25) and (2.27) into equation (2.30), we can get:
TR (Y.2)-£0,008,00.2)9,(6,8)-

1

£0.01.2)0,(8,78,(X) 70,2000, 8,0~ 19, 04.8)0,(2.)0,8)- (2:31)

%gx(z,mx(BX,BX)me:o.

Finally, applying equations (2.13) and (2.19) into equation (2.31), we obtain:-
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VP, (X;Y,Z) =0, (2.31)

forall X =®(X) e ®U) = E, X,Y,Z e E. This means that, the equality (2.7) in the theorem, is satisfied.

Now, if dim M > 3, we show that, the condition (2.7) follows directly from the condition (2.6) in

the considered theorem:
In this case, we use Bianchi's identity [ 1], which states that:

VR, (S; X;Y,Z2)+ VR (Y; X;Z,S)+ VR (Z; X;S,Y) =0, (2.33)

for all X:CD()_() e®U)cE,S)Y,Z, X eE.
Also, denoting:

9,.(S,R,(X;Y,Z)) =r,(S, X,Y,Z2), (2.34)

and using the equations (2.23) and (2.27) into equation (2.34), we have:

r(X;Y;Z,W) =g,(X,W)P(Z,Y) + g,(Y,Z).B (X ,W). (2.35)
Applying identity (2.34) into equation (2.33), we get:

vr (S; X;Y,Z,W)+Vr (Z;X;Y,W,S)+Vr, (W; X;Y,S,Z) =0. (2.36)

Covariant differentiation of equation (2.35) with respectto S € E , we obtain:

Y (Si X;Y,Z,W) = g, (X, W).VP,(S;Z,Y) +9,(Y,Z). VP, (S; X, W).
Similarly, we get:

Vr(Z;X;Y,W,8) = g,(X,8).VP,(Z;W,Y) + g, (Y,W).VP (Z; X, ),

vr,W;X;S,Z2) =9,(X,2). VB,W;S,Y) +g,(Y,S). VR, (W; X, Z).
Substituting these last three equations into equation (2.36), we have:
9.(X, X).VR(S;Z,Y) +9,(Y,Z). VR (S; X . W) +

9,(X,8).VR(Z;W,Y) +g,(Y,W).VR,(Z; X,S) + (2.37)
9,(X,2).VB,W;S,Y)+g,(Y,S).VRW;X,Z2)=0

Applying lemma(2.2) into equation (2.37), we obtain:

gX(Y,Z_).VPX(S; X VL) + gX(Y,VL).VPX(Z; X S_) +9,(Y,S).VPW; X,Z) =0,

forall xe ®(U) c E,Y €E.

Taking into account , in the last equation , that g, is non — singular yields:

Z VP, (S; XW) JrW.VPXx (Z;X,S)+S.VP,(W; X,Z) =0.

Since Z is Iinear_ly independent of W a_nd S , then we get :_

VP (S;W, X) =0.

This means that , we have three arbitrary vectors S,W, X € E3, satisfy the equations:
g,(X\W)=9,(X,S)=0, and satisfy, also the equation VP, (S;W, X) =0. Furthermore,

since P,(W, X) e L,(E;IR),then VP, (S;W,W) e L,(E;IR) is a trilinear, anti-symmetric form with

respect to the vectors S and W . Hence, from this and by using lemma (2.3.5) [ 2 ], we deduce that,
VP, (§;W, X)

can be represented as follows:

VP(S§;W, X) = 1, (8).9,(W, X), (2.38)

where u € L(E; IR) is a linear, continuous form. From equations (2.37) and (2.38), ewe can find:
#,(8).9,(X.W).9,(Y,Z2)— £,(5)9,(X,Z).9,(Y, W)+

1 (2).9,(X,2)8, (Y W) — 2,(2).9, (X W).g, (Y, 8) + (2.39)
#(W).0,(X,2).9,(Y,S) = ,(W).9,(X,S).9,(Y,Z) =0,
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forall xe ®(U) < E andforall X,Y,S,W € E.
Remark (2.2):
Since dimM > 3, then forall S, X,W,Z € E, wecanfind Y € E such that g, (Y,S)=9,(Y,Z)=0.

Appling this remark, into equation (2.39), we get:
a9,.(X, #,(2).9,W,Y).S—u,(S).g,W,Y).Z)=0,forall xe ®U) c E, andforall X € E.

Taking into account, that gis non-singular, we have: u (Z).9,(W,Y).S—x,(S)g,(W,Y).Z =0,
(2.40) forall ze ®(U)c E andforall S,Z,W € E.

Assuming that the vector S is linearly independent of the vector Z , we obtain:
u (2).g,W,Y)=0, forall xe ®(U) c E andforall Z,W € E.

Since. W is arbitrary vector and the metric Qis non-singular, we have: g ,(Z)=0, for all

Xc®U)cE,Z €E. thismeans that ¢ =0. (2.41)

Hence, VP, (Z;W,Y) =0, (2.42)
forall xe ®(U) c E andforall Z,Y,W € E, which is required.
Sufficiency:

For this aim, we assume that M is a Riemannian Banach manifold with a strong non-singular metric
g. Also, we suppose that the curvature tensor R of the space M , satisfies the equality (2.27) with the

condition (2.32) such that the tensor 5; (Y,V) is symmetric. Then, we show that the space M is locally
plane.
But, since the condition (2.32) is satisfied, then the equation (2.29) has a solution @, (Y) . Also, the

A(X)

equation (2.19) will has a solution A . In this case, we make the transformation g, '=e"".g,,and we get the

Riemannian Banach manifold (M ,6')with a curvature tensor R'= 0. Hence the space M ,6) is conformal

to the locally plane space (M ,6) and this completes the proof of the theorem.

Now, we introduce the following lemma:
Lemma (2.3): Let E be a vector space such that dim E >4, with a strong non-singular operator

g e L,(E;IR). If X,Y € E are arbitrary vectors such that X =0 and X is perpendicular to Y with
respect to the operator g, then there exists a vector Z € E , such that Z is perpendicular toY and the vectors

X,Z are linearly independent.

Proof: We have the following two cases:

(1) If Y is a non-isotropic vector (g(Y,Y) # 0) and X is perpendicular toY , then X and Y are linearly

independent vectors.

(2) If Y is an isotropic vector, then we, also have two cases:

(@) Thevectors X and Y are linearly independent.

(b) The vectors X and Y are linearly dependent. These cases are considered as follows:

(1) In this case we have g(Y,Y) =0 and since dim E >4, then there exists a vector S € E, which is
linearly independent of the vectors X and Y . Furthermore, if S is not perpendicular to Y , then we can
take a vector Z € E to be perpendicular to Y as follows:

Z=aX+9g(S,Y)Y —g(Y,Y).S, where « is an arbitrary number. It is clear that the vectors Z and X

are linearly independent and the lemma is valid in this case.

(2) (a) In the present case g(Y,Y)=0 and the vectors X,Y are linearly independent. Then, if we take
Z =Y, weget g(Z,Y) =0 such that the vectors X and Z are linearly independent and the lemma is
true.

() (b) Inthiscase X =0, X =mY,me IR is constant and g(X,Y) =0. But the lemma is valid also.
Since, if the lemma is not true, then there exists a vector Z € E such that Z is perpendicular to Y and
the vectors X and Z are linearly dependent. And, in this case we have that dim<Y >*=1, where
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<Y >" is the orthogonal complement [3] of the hypersurface <Y > . This means that dim E = 2 , which
is a contradiction with the fact that dim E > 4. This completes the proof of the considered lemma.

1. Riemannian Banach Manifolds Of Constant Sectional Curvature:

Let (M, g) be a Riemannian Banach manifold of constant sectional curvature [2]. In this case, the
curvature tensor Rf(?s;YLYz) on the Banach manifold M has the form [2]:

ﬁ;(YﬁYl,Yz) = l,[a;(Y3,Y2).Y1 —a; (YLYs).Yz], (3.2)

forall xe M ,Yl,YZ,YB eT M, where A_ is areal function of points of the space M and is called the
X

X

Gaussian curvature of the manifold M . Now, we consider the following theorem:
Theorem (3.1): A Riemannian Banach manifold (M, Q) of constant sectional curvature, such that
dimM >4 isalocally plane space.

Proof: It is sufficient to prove this theorem locally with respect to a chart ¢ = (U,®,E) ata point X € M.
We assume that the manifold M is of class C' (r > 3,0) with a strong non-singular metric 5 [2].

Now, the curvature tensor Rx of the space M, with respect to a chart ¢ =(U,®,E)at a point

X € M _stakes the form:

R.(X;Y,Z) = 4,[9,(Y, X).Z - g9,(Z, X).Y], (32)

forall x=®(x) e ®(U) < E, X,Y,Z € E. Where R, and g, are the models of the tensor R_ and the
metric 5 with respect to the chart c, respectively. Hence, by using theorem (2.1) we will find a symmetric

X

tensor P_(X,Y) satisfies the following conditions:
X

A00,(Y,X)Z ~ g, (Z,X)Y]= (Y, X)Z -

P(Z,X)Y +0,(X,Y).8,(2) —9,(X,2)5,Y), @3)
VP, (X;Y,2) =0, 9
such that P (Y,Z) =0, (Z,0,(Y)), (3.5)

forall xe p(U) c E, X,Y,Z € E.

Multiplying both sides of equation (3.3) by the arbitrary vector S € E and using the equality (3.5) , gives us:
A,09, (Y, X).9,(S,2) — 9,(Z, X).0,(S,Y)] =
P.(Y,X).0,(52)-P(Z,X).9,(5Y)+09,(X,Y).P.(S,Z2)-9,(X,Z).P(Y,S). (36)

Now, using lemma (2.1) we find that: forall Y #0, Se€ E and S is perpendicular to Y , there exists a

vector Z € E suchthat S is perpendicular to Z and the vectors Z,Y are linearly independent.
Hence, from equation (3.6) we get:

9,(X,Y).P.(S5,2)-9,(X,2).P.(Y,S)=0,

forall Xxe pg(U) c E, X € E.

Since the metric g is non-singular, we obtain: P, (S,Z)Y —P,(Y,S).Z =0.

Taking into account that the vectors Z and Y are linearly independent, we get: P, (Y,S) =0.
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Also, using lemma (2.3.3) [2] which states that: If for all a pair of vectors (Y,S) e E? satisfies the
condition g, (Y,S) =0, the following condition P, (Y,S) =0 is also, satisfied, where P, € L, (E; IR).

Then there exists a real number y, suchthat P, (X,Y)=y,.9,(X,Y). (3.7
Thus, from the relations (3.3) and (3.7) we have:

A9, Y, X).Z-9,(Z,X)Y]=y,.9,.(,X).Z -
7,9, (Z, X)Y +9,(X,Y).0,(X)—9,(X,2).5,(Y). (3.8)
Also, from equations (3.5) and (3.7) we obtain:  »,.9,(Y,Z)=0,(Z,0,(Y)),
forall xe ®(U)c E,Y,Z € E.
But, since the metric g is non-singular, we get: 5, (Y) = 7,..Y.
From this result and using equation (3.8), it is clear that:

A9, (Y, X).Z =9, (2, X).Y]=27y,.9,(Y, X).Z -
27,.9,(Z,X)Y,

forall xe ®U) c E,X,Y,Z € E.

Hence, by taking the vectors Z and Y are linearly independent we have:

A8, (Y, X)=2y,.9,(Y, X),
forall, Xxe ®(U)c E, X € E.
Since the metric g is non-singular and the vector X is arbitrary , we obtain: g, (X,Y) # 0. This means

that A, =2 y, . From which and considering equation (3.7) yields:
PX(X,Y):%QX(X,Y). (3.9)

Furthermore, the tensor P, (X,Y) satisfies the condition (3.4) which in the form:

VP, (S, X,Y)=0, forall xe®U)c E,S, X,Y € E. Hence, the tensor P, (X,Y) satisfies all the
required conditions and this completes the proof of the considered theorem.

I11.  The Metric Tensor Of A Banach Space Of Constant Sectional Curvature:
Let M be a Riemannian Banach manifold of constant sectional curvature 4, [2] of class C" (r > 3),

modeled on a Banach space E . Assume that the metric tensor g on the space M is strong non-singular [2].
Now, we consider the following theorem:

Theorem (4.1): If the metric tensor g on the manifold M , with respect to a chart ¢ =(U,®,E) at the

point xeM has the form:

9.(X.Y) = g' (X, Y)/¥,”, (“.0)

forall Xe®U)cE,X,Y € E. Where g* is a bilinear continuous symmetric strong non-singular,
constant form, does not depend on the point X € ®(U) and is defined on the space E . Then the scalar
function ‘P, on the set ®(U) will has the form:

Y, =1+ %.gl(x, X).

Proof: Differentiating the relation (4.1) with respect to the point X € ®(U) < E in the direction of the
vectorZ € E, we get:
~2g*(X,Y).D¥,(2)
v, ’
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similarly we have:

—2g"(X,Z).D¥,(Y)

Dg, (Y;X,Z) = 7D
_ 1
Dy, (X:Y,Z) = 29 (Y,lIZ]?)).D\PX(X).

Using the relations (1) and (4.1), we can obtain:

G(Z. 5, (X Y) =0 (Z, o [DY, (X)X + D¥, (N).X]) +

X

g (X.Y)D¥,(2), @2)

NO\XN, forall X € ®(U) < E we have that:

DW¥,: X e E— DY, (X) e IR is a linear continuous form [1] . And since the form g" is strong non-
singular, then there exists a vector B, € E such that:

D¥,(X)=g"(X,B,), (43)

forall xe®U)cE,X €E.

Hence, from equations (4.2), (4.3) and by taking into account that the form gl is non-singular, we can get:

T.(X,Y) =\Pi[g1(x Y).B, —D¥,(X)Y — D¥,(Y).X]. .4)
Differentiating the relation (4.4) with respect to X €e ®(U) < E in the direction of the vectorZ € E , we
obtain:

DI, (Z;X,Y)= \Pi[gl(x ,Y).DB, (Z)-D?¥,(Z;X)Y —

DY, (

\PZ

2 [4*(X.Y).B, — D, (X)Y — D¥. (Y).X]. @5)

X

D?¥ (Z;Y).X]-
Also, from relation (4.4) we can have:

L (XY.Z = o 08X ) 9 (B,,2) B, DY, (X).g'(Y . 2).B, -

DY, (Y), gl(X ,Z).B, — gl(X ,Y).D¥, (B,).Z +2DY, (X).DY, (Y).Z +
gl(X ,Y).D¥, (Z2).B, + DY, (Z).DY¥, (X).Y +

D¥, (Z2).D¥,(Y).X } (4.6)
Now, from equations (4.5) and (4.6), we can get:

R,(X;Y,Z)=DL(Z; X,Y)-L,(Ty (X,Y),2)=

Ti[gl(x,x).DBx(;) —D*¥,(Z; X) Y]+

X

%gl(x,;).D\PX(BX).L @7

where in this equation(4.7), R, (X;Y,Z) is the model of the curvature tensor Rx (Y,V,Z) of the space

M with respect to the chart c.

Since the space M has constant curvature [2], then by using equation (4.1) into equation (4.7) yields:
A
\PXZ [9°(X.Y).Z -9 (Z, X)Y]= 4,[9,(Y,X).Z - g,(Z, X)Y]=

X
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1, 1,
\P—Xg (X,Y)-DBX(Z)—?XQ (X,Z).DB,(Y) -

iDZ\PX(z; X).Y +iD2LPX (Y; X).Z +
¥ ¥

X X

%gl(x,Z).D\PX(BX).Y —égl(x Y).D¥, (B,).Z, (4.8)

forall xe ®(U)c E, X,Y,Z €E.
Now, assuming that dim M > 4 and using lemma (2.1) , we deuce that: for all arbitrary perpendcular
vectors X, Z € E with respect to the form gland Z =0, there exists a vector Y € E such that X,Y are

perpendicular with respect to g1 and the vectors Y, Z are linearly independent. Hence, from this and using
equation (4.8) we can obtain:

D*¥ (Z; X) =0. (4.9)

Also, considering lemma (2.3.3) [2],

then there exists a real number £, € IR such that:

D*¥, (Z; X) = 14,.9"(Z, X). (4.10)

We will show that ,L_t; is a scalar Quantity, does not depend on the point. Differentiating equation (4.3) in the
direction of a vector Y € E and using (4.10), we get:

g"(X,DB,(Y)) = D*¥, (Y; X) = 1,.q" (Y; X),

foralxe ®U) c E, X,Y € E.

Since, the form gl is non-singular, we can obtain:

D?B, (X;Y)=Dg, (Y).X.

But D’B, (X;Y)=D?B,(Y; X), from which, assuming that the vectors XY are linearly independent, we

have:
Dy, (X) =0. This means that g, is a scalar, does not dependent on X € ®(U) — E. Hence, from (4.10)

we deduce that: D*W¥, (X;Y) = 19" (X,Y).
(4.11)
Now, to find a solution for the differential equation (4.11) with respect to ¥ , we remark that:

D*¥, =D(D¥,) = 1.9 € L,(E;IR) = L(E;L(E;IR)),is a constant function. Hence, if we
putD(DY,) = f, where f € L(E;L(E;IR)),
then we get: DW¥, = DW(x) = f (x)+C,

Where C e L(E;IR) isa constant functionand f(x) = 2 g'(x,.) € L(E;IR).
Finally, we obtain:

P, =‘P(x)=%<f(x»(x>+c<x)+co

1
=§ux-gl(x, x)+C(x)+C,, (4.12)
forall x e ®(U) — E suchthat C, € IR.
Furthermore, all the solutions of equation (4.11) will be in the form (4.12). Since, if y, is another

solution of the equation (4.8), then 77, = 7, —¥, will be a solution of the equation: D277X =0.
This means that D7, =h € L(E; IR), is a constant function. And we get:

DOI: 10.9790/0837-3003024660 www.iosrjournals.org 57 |Page



Locally Planes Banach Submanifolds

n, =n(xX)=h(x)+h,, forall x e ®(U) < E suchthat h, € IR. From which, it is clear that:
=, =5 G )0+ OO0+ Gyt hOO+y = g (4,0 +C, (9 +C,,

where C,(x) =C(x) +h(x) € L(E;IR), C, =C,+h, € IR.
This shows that, all the solutions of the differential equation (4.11) have the form (4.12).
Furthermore, since C € L(E; IR) is a covector and since the form g" is strong non-singular, then there exists

avector A € E such that:
C(x) =g (A X),forall xe dU) cE.
From which and using (4.12), we obtain:

¥, :\P(x):%y.gl(x,x)+gl(A,X)+C0. (4.13)

Therefore, it is clear that:

D¥ (Y) = 9" (x,Y)+g (AY). (4.14)
Hence, we get:

D*¥,(Z;Y) = 19" (Z,Y), (4.15)
forallZ € E.

Also, by using equations (4.3) and (4.14) we deduce that: g*(B,Y) = DW, (Y) =
=1.9"(x,Y)+g'(AY),

foralxe ®U)c E,Y €E.

And we get: g*(Y,B, —ux—A)=0, for allxe®(U),Y e E. Taking into account that g* is non-

singular, we have B, =4, .X+ A (4.16)

Thus: DB, (Y)=A4,Y, (4.17)

forall Y € E.

Similarly, considering equations (4.14) and (4.16), it is clear that:

D¥, (B,) = 1.9 (%, X)+ 9" (A A) + 29" (X, A). (4.18)

Now, applying equations (4.13), (4.15),(4.17), and (4.18) into equation (4.8) and then comparing the
coefficients of the vector Z in both sides of the result, we can obtain:

e gH(X.Y)= 2“.91(x,Y)—é.g%x,Y).[uz.gl<x,x>+2u.gl(x,A)+ g'(A A)],

X \PX X

forall xe®(U) < E, X,Y €E.
From which, by considering equation (4.13) and using the non-singularity of g1 , We can have:
2uC,— A, —g*(A A =0. (4.19)
Now, to complete the proof of theorem (4.1), we must consider the following theorem:
Theorem (4.2): For a strong non-singular Riemannian metric §of a Banach Riemannian manifold

M of constant sectional curvature A, , which represents, locally with respect to a chartc = (U, ®, E) in the

1
form: gX(X,Y):(Z):w, where W, =‘P(x)=(l4)=%,ux.g1(x,x)+gl(A,x)+C0. such

2
X

that the constants ££,C; € IR, and the vector A € E satisfy the condition (4.19), we can find another chart
c'=(U’, @', E")in which the metric 5 takes the form:

1 ’ '
g (XY

[+ g X

g, (X",Y")= (4.20)
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A
which is a special case of the functions (4.1) and (4.13) when: = 7X ,Co =1,

and A=0.
Proof: According to the values of the constants 2 and C,, the following cases are considered:

Case 1. If u#0,, then equation (4.12), by taking into account the condition (4.19) takes the form:

¥, =i.gl(y.x+A,y.x+A)+ A . (4.21)
2u 2u
Now, we consider the transformation:
2x'
x=F x’:}/ 2 AL 422
0= ¥, Loy A (422
Thus we have:
X'=F(x)= 2(ux+A) (4.23)

g (ux+ A ux+A)’
and this gives us a new chart¢'= (U',®’, E"), for which the metric g, (X,Y) takes the form:

g'(X,Y) _9'(DF,(X),DF,(Y")

g,(X,)Y)= - , (4.24)

(Y(x)* [¥(FO)I?

' ' 1 oyt
where DF,, (X") 23[ - X, —— X '129 ,(X,’ XZ)], (4.25)
#og (X x) g (X, x))
' ' 1 ’ '
and similarly ~ DF,, (Y") :E[ T Y, —— X .fg ,(X,’Yz)]. (4.26)
#og (X x)  gi(x\x))
Hence, from equations (4.21), (4.24), (4.25) and (4.26) we can get:
1 X ’,Y r , . .

0,0 )=—3ED g xny,

[+ g' (XX
which is required.
Case 2:If u =0and C, #0,, then equation (4.12) takes the form:
P(x)=g"(Ax)+C,. 4.27)
Also, the condition (4.22) becomes:
g (A A)=-1,. (4.28)
Then, we consider the transformation:

2x'

X= F (Xl) = 1, (429)

g9'(x',x)
and X' =F7*(x)= 12—X (4.30)

9 (x,X)

With respect to this transformation, the metric g, has the form:
1 1 , ’
g, (X.Y)=—2 (X.Y) 9 (DF, (X ),’DFZX,(Y ) _
[9"(Ax)+C,] [ (F (x))]
_ 9" (X"Y")
=7 - —,
[ %-gl(x ,X)+gl(A,)()]2

which is the first case with ¢'=C, #0,A"= Aand C, =0.
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Case 3:If 1£=0 and C;, =0, then we obtain:

P(x) = g' (A X), (4.31)

and g*(A A)=-4,.

Hence A= 0, and since the form g1 is a strong non-singular, then there exists a vector S € E such that:

g'(AS) =S, #0. (4.32)

Thus, by considering the transformation F(Xx')=X=X"+S,X'=X—S =F *(x), then the metric g will be
g*(X.Y)

[g"(A X

"(DF (x),DF,(Y")) _
[9" (A F ()

in the form: g, (X,Y) =

This means that:

g,(X,Y)= J

g’ (X"Y")
[9"(AX)+S,]*

which is the second case with A" = A and Cé =S, . This completes the proof of theorem (4.1).

(4.33)

Hence, in the case of a Riemannian Banach manifold of constant Gaussian curvature, and at any point xeM ,
there exists a chart ¢'=(U’,®’,E"), such that the metric tensor of this space takes the canonical form (4.20)

with respect to this chart. Which is a generalization of this result in the finite-dimensional Riemannian
geometry.
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