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I. Introduction 
Bernstein[3] used (C,1) means to obtain the degree of approximation function f by Lip1 class. Jackson[6] 

determined the degree of approximation by using (C,δ) method in Lipα class for 0<α<1. Alexits[1], Chandra[5], 

Sahney and Goel[7], Sahney and Rao[8], Alexits and Leindler[2] studied the degree of approximation of 

function        and obtained the results which are not satisfied for n=0,1 or α=1. Binod Prasad Dhakal[4] 

studied the degree of approximation of function        considering cases 0<α<1 and α=1 separately using 

Matrix-Cesaro summability method. 

In this paper we have extended this result by obtaining the degree of approximation of function f belonging to a 

generalized class Lip(     
 

II. Definitions And Notations 
Let  be a periodic function with period    and integrable in the Lebesgue sense. Let its Fourier series be given 

by 

 (   
  

 
 ∑ (                 

                                                                                                              (2.1) 

The degree of approximation of a function f:R R by a trigonometric polynomial    of order is defined by  
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    be the infinite series whose n

th
 partial sum is given by 
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Cesaro means (C,1) of sequence {  } is given by 
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   . 

If           then the sequence {  } or the infinite series ∑   
 
    is said to be summable by Cesaro 

means (C,1) to s. 

Let T = (    ) be an infinite lower triangular matrix satisfying the Silverman-Toeplitz conditions of regularity 

i.e. ∑        
   as    ,         for    and ∑ |    |     

    a finite constant. 

Matrix-Cesaro means T(C1) of the sequence {  } is given by 

  =∑       
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If           then the sequence {  } or the infinite series ∑   
 
    is said to be summable by Matrix-

Cesaro means T(C1) to s. 

Important cases of Matrix-Cesaro means are: 

(i) (     C1 means when           ⁄   where    ∑      
    

(ii) (     C1 means when             ⁄  

(iii) (      C1 means when               ⁄  where    ∑          
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We shall use following notation:  
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III.  Main Theorem 
Let f is a    -periodic function, Lebesgue integrable on [-   ] and       ( (  , ) class and if 
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And                                                   
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          Then the degree of approximation of f by the Matrix-Cesaro T(C1) summability method of its Fourier 

series is given by 
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For the proof of our theorem following lemmas are required: 

Lemma:1  For 0<t <(    )
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IV. Proof Of Main Theorem 
The n

th
 partial sum of series   (  of the series (2.1) is given by 
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The (C,1) transform   of   is given by 
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The matrix means of the sequence {  }is given by 
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Now combining (4.1),(4.2) and (4.3), we get 
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