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Abstract: In this paper we study the 3- rings ,Idempotent of 3-ring and some other theorems .In the second
section we introduce Ideals on 3-rings,center of 3-rings and theorems, Topological 3-rings and their properties:
the set of open neighbourhoods of 0, its properties in topological 3-rings, Every topological 3- ring is a
homogeneous algebra and other theorem.
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I. Introduction

D. Van Dantzig firstly introduced the concept of topological ring in his thesis. Later N. Jacobson , L.S.
Pontryagin , L.A. Skornjakov Small and S. Warner developed and studied various properties :Connected
topological rings, Totally disconnected topological rings, Banach algebras, Ring of P-addict integers, locally
compact fields, locally compact division rings and their structure. McCoy and Montgomery introduced the
concept of a p-ring (p prime) as a ring R in which x p = x and p x = 0 for all x in R. Thus, Boolean rings are
simply 2-rings (p = 2).,Koteswararao.P in his thesis developed the concept of 3-rings,3-rings generates A*-
algebras and their equivalence. With this as motivation ,I introduce the concept of Topological 3-rings.

1. Prelimanaries
1.1 Definition: A commutative ring (R,+,.1) such that x3=x, 3x=0 for all x in R is called a 3-ring.

1.2 Note: (1) x + x=-x for all x in a 3-ring R
(2) Here after R-stands for a 3-ring.

1.3 Example: 3={0, 1, 2} . Then (3, +, . ,1) is a 3-ring where

. 1012
+ 1012

0/0]0]0
0/0]1 ]2

110]1]2
1111210 > To 2 1
2 121011

1.4 Example 2: Suppose X is a non empty set .Then (3%, +,. 0,1) is a 3-ring with

(a) (f+9)(x) = f(x) +g(x).

(b) (f.9)(x) =1(x).9(x).

(©) 0(x) =0.

(d) 1(x) =1 for all xeX, f, ge3*.

1.5 Definition: Let R be a 3-ring. An element aeR is called an
idempotent if a®=a .

1.6 Lemma: AnelementaeR is an idempotent iff 1-a is an idempotent.

Proof: Suppose a is an idempotent
Claim : (1-a) is an idempotent
(1 —a)?=1+a2-2a=1+a-2a (- ais idempotent)
=l-a
-~ (1-a) is an idempotent

Conversely suppose that (1-a ) is an idempotent
We have to show that a is an idempotent:
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 (1-a) is an idempotent
1-(1-a) is an idempotent ( By above)
=a is an idempotent element.

1.7 Lemma: For any element a in a 3-ring R, a? is an idempotent.
Proof: Suppose aeR
~ Risa3-ring, a3=a
(a%)2=a%.a’= a%. a=a. a=a?
~ a? is an idempotent for every ae R.

Il.  Main Results
2.1 Definition : A non empty subset | of a 3-ring R is said to be ideal
if(iYa,bell=lla+belll (ii))aclll,reR=llar [l rael]l.
Note: A non empty sub set | of R is said to be a right ideal (left ideal) of
R,if (i)a,bel=a+bel(iacl,reR=arel(rael)

2.2 Note : Suppose aeR then there is minimal left ideal (right ideal) exists containing a which is called the
principal right (left) ideal denoted by (a)l ((a)r) is the set of all ra (ar), reR.
i.e, @r={ar/reR}and (a)l={ra/reR}.

2.3 Note : The set of all right ideals form a partially ordered set with respect to set theoretical inclusion 1cJ.
This set has a minimum element:
0= (0)and a maximum one : R = (1)r.

2.4 Note (1) : For any set of ideals 11, 12 ..... 3 ’a maximal ideal
I such thatJl <11, 12, ..... and 11n 112 N[].... is the maximal ideal
contained in every ideal 11, 12, .... and it is denoted by glb {I1,12, ....}.

(2)For any set of ideals I1, 12, .... d1a minimal ideal | such that(]
I <11, 12, ... and it is denoted by lub {I1, 12, ....}.

2.5 Note : For the ideals 11, 12; glb {11, 12} is denoted by 11 AT712. and lub {I1, 12} is denoted by 11 v(112.
Thus the set of right ideals form a lattice with A,v[Zero (0), unit R.

2.6 Definition: The center of a 3-ring R is the set C = {aeR/ax = xa ,vxe R}. C is a commutative ring with
unit 1.

2.7 Theorem: If a,b are the idempotent elements in C,then ab an idempotent and abeC and also (a) A (b) =
(ab)
Proof:Let R be a 3-ring .
Suppose a,beR and a,b are idempotents.
(ab)? =ab.ab = a’.h? = ab.
Therefore ab is an idempotent.
Let xeR = (ab)x = a(bx) =a(xb) =(ax)b =(xa)b =x(ab)
Therefore (ab)x =x(ab)
..ab e C. ab=ba ea and also belongs to b
. (ab)«c (a)«(b)+=(ab)« = (a)«A(b)«
Let xe (a)x A (b)« = ax =bx =x
cabx =x . xe (ab)«
(@)« A(b)+c (ab)«
2 (@) (b)+ = (ab)«

2.8 Theorem: If a,b are idempotents in C, then a+b-ab C , idempotent and also (a)« v (b)~ = (a+b-ab)-
Proof: atb-ab =1-(1-a)(1-b).

Since a,beC = (1-a),(1-b) e C and are idempotent.

=1-(1-a)(1-b)eC and idempotent.

..a+b-abisan idempotent and belongs to C.
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(@)=v(b)« =((a)-"Vv(b)-")" = (1-(1-a)(1-b))~ =(a-b-ab)-
<. (@)~v(b)- =(a + b-ab)-

2.9 Theorem: Center of a 3-ring C is a 3-ring
Proof: LetacC =ae R
Since R is a 3-ring and acR then a® = a and 3a =0
We have
3(a x) = (3a)x
=0x  (since R is a 3-ring)
=0.
Therefore 3(a x) =0, VaeR xeR.
LetzeR
z.ax=za.x
=x.za
=xaz
=X a.z
=ax.z
~axeC
Therefore C is 3-ring.

2.10 Definition: A set R is said to be a topological 3- ring if

1.Ris a 3-ring.

2. Ris a topological space.

3. The operations +, ., —, (-)* are continuous.

2.11 Note : For any subsets U, V €[ IR, we define
U+V={u+vliuellU,v[leV}
U.V={uv/uleU,veV}

—U={uu1eU}.
U* = {u*/u e 1U}

2.12 Note : 1) + : R x R—[] R is continuous means, for every neighbourhood W of a + b, a, b €'R there exist
neighbourhoods U of a, V of b such that U + V CW.

2) . : R x R —[I[IR is continuous, for every neighbourhood W of ab, a, b [1€R, there exist
neighbourhoods U of a, V of b such that
U.Vvc w.

3) —: R — IR is continuous, if for every neighbourhood W of —a, there exist a neighbourhood U of
asuchthat—U cW.

4) (-)* : R— R* is continuous means, for every neighbourhood W of a*,  there exist a
neighbourhood U of a such that U*< W,

2.13 Lemma : Suppose R is a topological 3- ring. If ¢ €[ IR, then
i) The map x — [ c + X, is homeomorphism.
i) The maps x— [ [lex, x — [ [IXC are continuous.

Proof : The subspace {c} x R of R x R is clearly homeomorphic to R via (¢, b) — b and the restriction of +
to {c} x R to R is continuous and clearly bijection.

www.iosrjournals.org 3| Page



Topological 3- Rings

OO0 00O nanox— H(e, X) — e + x is continuous and bijective.

OOooo00000onix— He +xis continuous and bijective. And its inverse x— —¢ + x is continuous and
bijective. /[ 1x— [Ic + X is homeomorphism.

The subspace {c} x R of R x R is clearly homeomorphic to R
via (¢, b) — b and the restriction of . to {c} x R— [ R is continuous. Similarly x— [xc is continuous.

2.14 Note : 1) R is a topological 3- ring. Since — : R— [1R is clearly
homeomorphism. So U is open, — U is also open.

2) Since x— x + ¢ is homeomorphic, then for any open US 'R, ¢ €[IR, then U + ¢ = {u + c/u €1 [1U} is
open. If U, V are open, then U + V is open.

3) If U is open neighbourhood of ¢ iff U — ¢ is an open neighbourhood of 0. So,the topology of R is completely
determined by the open neighbourhoods of 0.

2.15 Definition : Let X be a topological space. If x €7 [1X, then a fundamental system of neighbourhoods of x
is a non-empty set M of open neighbourhoods of x with the property that, if U is open and x €7 [1U, then there
isV el1lM with V c[1U.

2.16 Definition : Let R be a 3- ring. A non-empty set N of subsets of R is
fundamental if it satisfies the following conditions.

(a) Every element of N contain 0.

(b) If U, VE [N, then there is W €[IN with W €[1U [V,

(0). For Ue /N and ce U, there exist VE[IN such that ¢ + V €U.

(1). For each U€ [N there exist VE [N such that V +V €1U.

(2). U €[N then — U €N,

(3). If U€ [IN there exist V €[N such that V*< [1U.

(4). For ce (/R and U€ [N there is V€ /N such that ¢ VE /U and V¢ S[U.
(5). For each U €[N there is V€ [IN such that V.V €[ 1U.

2.17 Theorem : Suppose R is a topological 3- ring. Then the set N of open
neighbourhoods of 0 satisfies.
(0). ForUe ""Nandc€ [1U,dl1T1V € [N suchthatc+V clU.
(1). For each U € [N, there exist VE [N such that V +V c[]U.
(2). If U € 0N, then— U€e [IN.
(3). IfU € N, then A0 JVE [N 3V* cU.
(4). Forc € (IR and U € [N, there is VE /N such that ¢ V €[ /U and Vc< [U.
(5). For each U € [N there is V € [IN such that V.V €[ U.
Conversely, if R is a regular ring and N a non-empty set of subsets of R

which satisfies NO, N1, N2, N3, N4 and N5 has the property that (a) every element of N contains 0 and (b) if
U, Ve [N, then there is W € [N such that W S 7U N[V, then there is a unique topology on R making R into
a topological3-ring in such away that N is a fundamental system of neighbourhoods of 0.
Proof :

NO .LetUe 'Nandce (U, then U - c is a neighbourhood of 0.
ool = Ja neighbourhood V of 0 such that Vil lU-c=V +c cl U

N1. LetUe [IIN=110€ JU=011(0,0)€ L+1(U)
+ is continuous, so +7* (U) is open and (0, 0) € T'+7* (U), 1 Topen  sets, V1, V2 with (0, 0) € (1VI
x V2C [1+71 (V).
LetV=V1In1V2= [1(0,0) e IV xVC [+ T(U)y=[IV+V U
N2. LetUe [IN = U neighbourhood of 0.
—: R >R is homeomorphic and U is open = [-U is open.
+0e U= [10e [-U. ~ -U€eN.
N3. » * R — [IR is continuous and U is a neighbourhood of 0, then
*1(U)isopenand 0 € 1* ' (U). = [1d[]a neighbourhood V of 0 such that VC [ 1* 1 (U) = [1V* C[]U.
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N4. Let U €lIN and ¢ €'R = U is neighbourhood of 0. xS Tcx is continuous and U is neighbourhood of
0, then 37 a neighbourhood V
of 0 such that cV< U (By taking x = 0). Similarly Vc S7U.
N5. Let U €l /N = [JU is a neighbourhood of 0.
multiplication . is continuous, .[1™" (U) is open and contains (0, 0).

[l=[1d[ Ineighbour hoods V1, V2 of 0 such that (0, 0) €[1V1 x V2c [1.71 (U).
LetV=V1nIV2=00,00eLVxVcIT(U)=1V.VclU.

Conversely suppose R is a regular ring and N be a non-empty set of

subsets of R with the given properties. We define a subset U of R to be open if for every x e[1U, /W € [IN
[xX+WclU.
Clearly this is a topology.
For : Clearly @, R are open.
Suppose {Ua 1/ al € [1A} is a family of open sets.

LetU=uU
| jggdad aeA
Letx € U =[x euU
aeA
=[x € [Uallfor some o 1€ [JA[I=[1 1[IV € IIN3V +x Sll1Ua
=[V+xclulUu
goooooooooooboodfHdoeA

= [IV+xclU.

~JIU is an open set.

Let U1, U2 be two open sets. Let U = U1 n[1U2.

Letxe U I=xe[JUland xe U2 =[d V], V2€ [IN3[IV1+xClUIl, V2+x Sl 'U2.Then d[ |1V €
N3V ClIVINIV2. Then V+x €lIUL, V+x Cl1U2.

~V+xcliUl U2, ~00UL nEU2 is open.

LetUe [/Nand x € [JR. Then 3111V € [IN3V +x C[1U (By NO)

~[11The sets in N are also open sets containing 0.

Claim : If U is open, then for ce 'R, ¢ + U is open.

Letbe c+U=[b-ce [1U.

AOHONOVENN3b—c+VEIU By (NO)=b+V Cllc+U.

~[1c+ U is open set.

Claim: +: R x R -»[JR is continuous.

Let U be an open set. Let (c,d) € [+ (U) =llc+de [IU.

SO0 dO0IWE DN Ic+d+WCEIU. v WE LN, by N1, A TIQE IIN3LQ+Q SIW.
“lletd+Q+QCliic+d+WceliU=li(c,d)€ [I(c+Q)x(d+Q) <+ (U).
~[1+71 (U) is open. ~ 101+ is continuous.

Claim: —: R —»[IR is continuous.

Let U be an open set. Letb € [I- U= [I-be [U.

FromNO, d7777Ve [IN3[l-b+V cllU=lb-Vcl-U.

~[000=Uisopen. (~V € [IN =11-V € [IN by N2). ~[I[]— is continuous

.Claim : The map 61: R — IR by x —cx is continuous.

Let U be anopenset. Letx € 0 1 1(U) = 011(x) € [1TU =lIcx [1€ U

= d1WE [IN3ex+W S U By N0). QW e N, d Ve IN3IcV SIW.
Thenx +V €167t (U). ~[111671 (U) is open

~[1010i.e., x —[Ic x is continuous. Similarly x —[1x ¢ is continuous.
Claim: m: R x R — R is continuous, where m(a, b) =a .b

Let U be an open setand (¢, d) € "'m™ (U).

The maps 67 : R — /R and W/ : R —[ R where 0 (X) =c x, ¥(x) =x c are
continuous.

v (c,d)e m? (U)=IIm(c,d)e [TU=lIlcde U

=[] W e [IN>3cd+W cl1U (By NO).

+WEe N Q€ IN3IQ+QCIW (ByNI)

~+Q€ELN,d Ve LN3IV.VCQ (ByNS5).

+ Q€ N, dPe N3P +PcliQ(ByNl).
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LetPd=9¥1(P) " QNIV,Pc=071(P) n1Q NLIV.

Then (c, d) € [I(c + Pd) x (d + Pc) € 'm-1(U). ~.[1[m is continuous.

Claim : * : R— [IR is continuous. Let U be an open set.

Letx € (1*(U) =[x * € [1U =[1U — x* is a neighbourhood of 0

LSOO HOEOVE NSOV CU —x* = Ix*+ V* U,

Suppose (11 ]is another topology on R for which N is a fundamental system

of neighbourhoods of 0 in this topology. Then the topology /[ and the topology
defined above have same open base.

~IThe topology must agree with the topology we have defined above.
~[1l1The topology is unique.

~J[N generates a unique topology on R for which N is a fundamental system of neighbourhoods of 0.

2.18 Note : If R is a 3- ring then R has no non-zero nilpotent elements, every prime ideal is maximal and
Jacobson radical of R is {0}.

2.19 Theorem : Suppose R is a topological 3-ring. S, T are subsets of R
.Then a) ST, S+ T are compact whenever S, T are compact.
b) — S, S* are compact whenever S is compact.
c) ST, S + T are connected sets whenever S, T are connected sets.
d) —S, S* are connected whenever S is connected.
Proof :
a) Since continuous image of a compact set is compact.
: R x R— [IR are continuous, S, T are compact sets, then
(SxT)=ST,
+(SxT) =S+ T are compact.
b) + —:R— IR and * : R— IR are continuous and S in compact, then —S, S* are compact.
c) -~ continuous image of a connected set in connected, . : R x R— IR and + : R x R— [R are continuous,
.(SxT)=ST,+(SxT)=S+T are connected sets.
d)~ —:R —I[IR, *: R— R are continuous and S is connected, so —S, S* are connected.

2.20 Theorem : The union of all connected subsets contain 0 is a topological Sub 3- ring.
Proof : Suppose {Si /i €11} is a class of all connected sets containing 0.
LetS=USi contain 0
i el
+ 0 el1S= [10€ [ISi for some i€ [1l =11 —0[1e— Si =[11€ [-Si

~ Si is connected, — Si is also connected.

O le [IS. Letae [IS= [lael IKiforsomei=l-ae [ -Ki=[—a€llS.
[la€llIS=—-a€lS

Suppose a, be [1S= [la €[ISi, be [1Sj =Tla+ b €[ISi + §j

~Ja+b €IS (~ Si+ Sjis connected)

~ ]S is a topological sub 3- ring of R.

2.21 Theorem : Suppose R is a topological 3- ring and | is ideal of R. Then

I isalso an ideal of R.

Proof : Suppose | is an ideal of R. T = {a € [IR/every neighbourhood of a intersects I}
Claim: T isanideal. Leta, be [T

=[|Every neighbourhood of a, every neighbourhood of b intersects I.

Suppose W is a neighbourhood of a + b.

=[1d neighbour hood U of a, neighbourhood V of b such that U + V €W,

-« U intersects I, V intersects | so U + V intersects I, then W intersects I.
~lla+belll.Leta€e (l,beER.

Claim:abe [11.-a€ 11 =[IEvery neighbourhood of a intersects I.

Let W be a neighbourhood of ab. then d [Ineighbourhood U of a, neighbourhood V of b 311UV C[1W.
~UNnOl = DdlaelU3Ja€e (Il. Letab e [ITUV =llabe [I(~a€ )
~JUV NI # U, ~ UV intersects 1.

UV C1W, so W intersects I. =~ lab € [T

Similarly bae © 1. .. Tisan ideal of R.
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2.22 Theorem : Every maximal ideal M of a topological 3- ring R is closed.
Proof : Clearly M €IM( . = M1 is ideal, 5o M =M[| ~[IM is closed.

2.23 Theorem : If a topological 3- ring is T2 space then it is a Hausdorff

space.

Proof : Suppose R is a T2 space and a, b €71R and a #[1b.

~ R is a T2 space d neighbourhood U of a and neighbourhood V of
ballagg 1V, begg 1U. Suppose U NIV # [

LetW=UNV. Let c E[]W =W — ¢ is neighbourhood of 0.

Let K =W —c =1 K is neighbourhood of 0.

=[ K +aand K + b are neighbourhoods of a and b respectively and
(K+a)NNn(K+b)y=101.

~JR is Hausdorff space.

2.24 Theorem : Every topological 3- ring is a homogeneous algebra.

ie., for every p, g (p# q) there is a continuous map f : R =R such that f(p)=q.

Proof : R is a topological 3- ring. Let ¢ = g — p, then the function f: R— IR
by f(x) = ¢ + x is continuous and f(p) =c+p=q-p+p =q.

2.25 Theorem : Suppose R is a topological 3- ring and X = spec R. R*is a
complete Boolean algebra. Suppose M is a subset of Spec R = X.
Denote QM ,the set of elements e € IR* for which M €[1X e. Then XALIQM SIM. In particular if M is
nowhere dense in Spec R, then ATIQM = 0.
Proof : Letx e [1X ALIQM .
Suppose x & ¢ M. =[1d [a neighbourhood X e of the point 3[1X e N[ 1M = &.
=[MclXe (e'=1-¢e)=lle'€[IQM
~e AllLI(ALIQM) Slle Allel =0
i.e, e ALI(ALQM) =0= 11X e AlI(ALIQM) =@ =1 XenlIX ALIQM =J
It is a contradiction (Q x € X ALIQM and x € X e). ~ X E[/M.
& X ALCIQM <M. . Suppose M is nowhere dense.

= M/ contains no non-empty open subset.
But X ALQM cM 1= X ALIQM =& 1= ALQM =0.
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