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l. Introduction
Let E := (E, ||.||) be a real Banach space, K be a nonempty convex subset of E, and T be a self mapping of

K. The Mann iteration [9] is defined asx1 € K and
Xn+1 =(l—an)Xn+oanTxn, n>1. (1.1) The Ishikawa iteration [5] is defined as x1 € K and
yn = (1-Bn)Xn + BnTXn
Xn+1 =(l-an)Xn+anTyn,n>1. (1.2
The Noor iteration [8] is defined as x1 € K and zn = (1-yn)Xn +ynTXn
yn = (1-Bn)xn +PnTzn

Xn+1 = (1 —oan)Xn +anTyn, n>1, (1.3)

The Khan iteration [9] is defined as x1 € K and
Kns1 = (1-0)T"X, + anS"Y,
Yo = (1-Bn)Xn + BT, N21, (1.4)

Where {an}, {fn¥{yn} C(0,1].

In the aowe taking Bn = 0 in (1.2) and taking Bn = 0, yn = 0in (1.3) we
Obtain iteration (1.1).
In 1975, Baillon [1] first introduced nonlinear ergodic theorem for general non-expansive mapping
in a Hilbert space H: if K is a closed and convex subset of H and T has a fixed point , then for
every xe K,{T"x} is a weakly almost convergent, as N — =, to a fixed point of T.It was also
n-1 -

shown by Pazy[11] that if H is a real Hilbert space and (1/n) Z T'x converges weakly, as n — o, toy € K,
i=0

y € F(T).

In 1941, Tricomi introduced the concept of a quasi-nonexpansive mapping for real functions. Later Diaz and
Metcalf [2] and Dotson [3] studied quasi- nonexpansive mappings in Banach spaces. Recently, this concept wes
given by Kirk [6] in metric spaces which we adapt to a normed space as the following: T iscalled a quasi-

nonexpansive mapping provided for all x € K and f € F(T).
ITx=F[ < [[x-F] (15)

Recall that a Banach space E is said to satisfy Opial’s condition [10] if, for each sequence {Xn} in
E, the condition xpn — x implies that
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limsup ||xn —x|| < limsup ||xn -yl (1.6)
nN—o0 nN—o0

forall y € E with y # x. It is well known from [10] that all 1p spaces for 1 < p < oohave this property.

However, the lp spaces do not, unless p = 2.The following definitions and statements are needed for the proof
of our thorem.

Let K be a closed convex bounded subset of uniformly convex Banach spaces E and T self-mapping of E. Then
T is called nonexpansive on K if

ITx=Ty[l < [[x-y] @)
for all x,y € K. Let F(T) := {x € K: Tx = x} be denote the set of fixed pointsof a mapping T.

Let K be asubset of a normed space E and T and I self-mappings of K. ThenT is called I-nonexpansive on K if
ITx-Tyll < ix-1x] (18)
for all x,y € K [14].

A mapping T is called I-quasi-nonexpansive on
[ Tx—f|| < [lx—F (1.9)

forall x,ye Kand f e F(T) NF(I).

A subset K of E is said to be a retract of E if there exists a continuous map P : E — K such that P

x =x forall x e K. AmapP : E — E issaid to be a retraction if P2 =P. It follows that if a map P is
a retraction, then Py =y for all y in the range of P. A set K is optimal if each point outside K canbe moved
to be closer to all points of K. Note that every nonexpansive retract is optimal. In strictly convex Banach
spaces, optimal sets are closed and convex. However, every closed convex subset of a Hilbert space is optimal
and also a nonexpansive retract.
Remark 1.1. From the above definitions it iseasy to sethat if F(T) is nonempty, a nonexpansive mapping must
be quasi-nonexpansive, and linear quasi- nonexpansive mappings are nonexpansive. But it is easily seen that
there exist nonlinear continuous quasi-nonexpansive mappings which are not nonexpansive. There are many
results on fixed points on nonexpansive and quasi-nonexpansive mappings in Banach spaces and metric spaces.
For example, Petryshyn and Williamson [12] studied the strong and weak convergence of the sequence of
certain iterates to a fixed point of quasi-nonexpansive mapping. Their analysis was related to the convergence
of Mann iterates studied by Dotson [3]. Subsequently, Ghosh and Debnath [4] considered the convergence of
Ishikawa iterates of quasi- nonexpansive mappings in Banach spaces. Later Temir and Gul [15] proved the
weakly convergence theorem for I -asymptotically quasi-nonexpansive mapping defined in Hilbert space. In
[16], the convergence theorems of iterative schemes for nonexpansive mappings have been presented and
generalized.

In [13], Rhoades and Temir considered T and I self-mappings of K, where T is I -nonexpansive
mapping. They established the weak convergence of the sequence of Mann iterates to a common fixed point of T
and 1. More precisely, they proved the following theorems.

Theorem (Rhoades and Temir [13]): Let K be a closed convex hounded subset of uniformly convex
Banach space E, which satisfies Opial’s condition, and let T, 1 self-mappings of K with T be an I-
nonexpansive mapping, | a nonex- pansive on K. Then, for x0 € K, the sequence {xn} of modified Noor
iterates converges weakly to common fixed point of F(T) NF(1).

In the above theorem, T remains self-mapping of a nonempty closed convex subset K of a uniformly convex
Banach space. If, however, the domain K of T isa proper subset of E and T maps K into E then, the iteration
formula (1.1) may fail to be well defined. One method that has been used to overcome this in the case of single
operator T is to introduce a retraction P : E — K in the recursion formula (1.1) as follows: x1 € K,

Xn+1 = (L—an)Xn + anPTXxn,n>1.

In [7], Kiziltunc and Ozdemir considered T and 1 are nonself mapping of K where T is an I -
nonexpensive mapping. They established the weak convergence of the sequence of the modified Ishikawa
iterative scheme to a common fixed point of T and 1.

yn = P((1 =Bn)Xn+BnTXn)
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Xn+1 = P((l—(xn)Xn + OLnTyn), n>1. (1.10)
In this paper, we consider T and I are nonself mappings of K, where T isan I-nonexpansive

mappings. We prove the weak convergence of the sequence of modified Noor iterative scheme to a common fixed
point of F(T) NF(I).

1. Main Results

In this section, we prove the weak convergence theorem.

Theorem 2.1.

Xn+1 = (1_

Let K he a closed convex bounded subset of a uniformly convex Banach space E which
satisfies Opial’s condition, and let T, I nonself mappings of K with T be an I-nonexpansive mapping, I a
nonexpansive on K. Then, for x0 € K, the sequence {xn} of modified Khan iterates defined by x,€ K,

Z. =A-y)X, +7.T"X,,
Yo = (1_ﬂn)xn +ﬂnsnzn,

an)xn +anpnyn,
n>1. 2.1)

converges weakly to common fixed point of F(T) NF(1).

Proof. If F(T)NF (1) is nonempty and a singleton, then the proof is complete. We will assume that F(T)NF (1)
is nonempty and that F(T)NF (1) is not a singleton.

and

and also, we get

[x —f||:H(1—an)xn+anP”yn—fH

n+1

:H(l—ozn)xn +a,P"y, —(1-«, +an)fH
Py, 1]
< (L-a,)|x, = fl|+ e K|y, — f| (2.2)

< (l-a,)|x, — f|+e,

Ive = =|@- 8%, + 8.5z, 1|
= |[@-B)x%, + B, (s"2, - 1)
< (1= 8%, — ]|+ B[Sz, - f|
< @=B % = f+B.K,l|z = T (2.3)

lz, = f]= |@=7)%, +7.T"%, — f|
= |[@=0% +7,(T"x, — f|

< (@-7)|x, = fl|+7. "I’"xn —~ fH

< @=7)% = [+ 7. K%, = ]

(2.4)

Substituting (2.4) in (2.3), we have

”yn - f” < (1_ﬂn)||xn - f||+ Knﬂn (1_7/n + Knyn)”Xn - f”
2.5)

Substituting (2.5) in (2.2), we have

X0 — F| < Q=ex,)|%, — f]|+ 2 K, @@= B, + K, B, =K, Bvn + KiB 70X, — f

< (1_ a, + Knan - KnOlnﬁn + Kr?anﬂn - Kﬁanﬂnyn + Kr?anﬁnyn)nxn - f”

< [1_an(Kn _1)+anﬂn Kn(Kn _1)+anﬁn7n Kr?(Kn _1)]||Xn - f”
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Thus on #0, By #0 and y #0 . Since {Kn} is a nonincreasing bounded sequence and hence K, < 1 implies that
Z:n:l(Kn —1) <oo. Then Lm”X” —f| exists.

Now we show that {x_} converges weakly to a common fixed point of T and I. The sequence {X,} contains
a subsequence which converges weakly to a point in K. Let {x, } and {x,,, } be two subsequences of {Xn}

which converge weak to £ and g, respectively. We will show that f = . Suppose that E satisfies Opial’s
condition and that f#q is in weak limit set of the sequence {x,}. Then {X}—f and {xmk}—q, respectively.
Since Iim||xn - f” exists for any f eF(T) NF(I), by opial’s condition, we conclude that

N—o0

il el im [, < fim I, —al
=lim |x, —qll=lim |x; ~al

<lim [ el lim i, 11

This is a contradiction. Thus {x,} converges weakly to an element of F(T) NF(I). This completes the proof.

Corollary 2.2.(Kumam et al.[8, Theorem 2.1]) Let K be a closed convexbounded subset of a uniformly
convex Banach space X, which satisfies Opial’s condition, and let T, 1 self-mappings of K with T be an I
-quasi-nonexpansive mapping, I a nonexpansive on K. Then, for x, € K, the sequence {X,} of three-step
Noor iterative scheme defined by (1.3) converges weakly to common fixed point of F(T) NF(1).

Corollary2.3. (Kiziltunc and Ozdemir [7, Theorem 2.1]) Let K be a closed con- vex bounded subset of
a uniformly convex Banach space E, which satisfies Opial’s condition, and let T, 1 nonself mappings of K with
T be an I-nonexpansive map- ping, 1 a nonexpansive on K. Then, for x, € K, the sequence {x,} of modi-
fied Ishikawa iterates defined by (1.9) converges weakly to common fixed point of F(T) NF(I).

Theorem 24. Let K be a closed convex bounded subset of a uniformly convex Banach space E, which
satisfies Opial’s condition, and let T, I nonself mappings of K with T be an I-nonexpansive mapping, | a
nonexpansive on K. Then, for x1 € K, the sequence {x,, } of Mann converges weakly to common fixed point
of F(T) NF(I).
Proof. Putting vy, = 0 and 3,, = 0 in Theorem 2.1, we obtain the desired result.
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