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Abstract: In this paper, we implement the method of Steepest Descent in single and multilayer feedforward 

artificial neural networks. In all previous works, all the update weight equations for single or  multilayer 

feedforward artificial neural networks  has been calculated by choosing a single activation function for various 

processing unit in the network. We, at first, calculate the total error function separately for single and 

multilayer feedforward artificial neural networks and then calculate the three new update weight equations for 

taking different activation function in different processing unit separately single and multilayer feedforward 

artificial neural networks. An example is given to show usefulness of this implementation. 

Keywords: Feedforward Artificial Neural Networks, Back propagation Learning, Activation Functions, 

Training. 

 

I. Introduction 
 Feed-forward artificial neural networks (FNN) [ 1-3]  have been widely used for various tasks, such as 

pattern recognition, function approximation, dynamical modeling, data mining, and time series forecasting. The 

training of FNN is mainly undertaken using the back-propagation (BP) [4-5 ] based learning. The 

Backpropagation training algorithm  for training feed-forward networks was developed by Paul Werbos[Paul 

Werbos84], and later by Parker[Parker85] and Rummelhart [Rummelhart 94] . This type of network 

configuration is the most common in use, due to its ease of training. It is estimated that over 80% of all neural 

network projects in development use backpropagation. The reason for the name "backprogagation" is that the 

output errors are "propagated back" from the output layer to the hidden layer, and are used in the update 

equation for the hidden layer weights. There are two phases in its learning cycle, one to propagate the input 

pattern through the network and the other to adapt the output, by changing the weights in the network. It is the 

error signals that are back propagated in the network operation to the hidden layer(s). The portion of the error 

signal that a hidden-layer neuron receives in this process is an estimate of the contribution of a particular neuron 

to the output error. Adjusting on this basis the weights of the connections, the squared error, or some other 

metric, is reduced in each cycle and finally minimized, if possible. A Back-Propagation network consists of at 

least three layers of units: an input layer, at least one intermediate hidden layer, and an output layer. Typically, 

units are connected in a feed-forward fashion with input units fully connected to units in the hidden layer and 

hidden units fully connected to units in the output layer. When a Back- Propagation network is cycled, an input 

pattern is propagated forward to the output units through the intervening input-to-hidden and hidden-to-output 

weights. 

 
Figure 1   Structure of a feedforwarded artificial  neural network. 
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 The method of steepest descent [7-8]  is so popular among many mathematicians: it is very simple, 

easy to use, and each repetition is fast. But the biggest advantage of this method lies in the fact that it is 

guaranteed to find the minimum through numerous times of iterations as long as it exists. However, this method 

also has some big flaws: If it is used on a badly scaled system, it will end up going through an infinite number of 

iterations before locating the minimum, and since each of steps taken during iterations are extremely small, thus 

the convergence speed is pretty slow, this process can literally take forever! Al- though a larger step size will 

increase the convergence speed, but it could also result in an estimate with large error. For example, if there is a 

long and narrow valley in the error surface, the component of the gradient in the direction that points along the 

base of the valley is very small while the component along the valley walls is quite large. This results in motion 

more in the direction of the walls even though we have to move a long distance along the base and a small 

distance along the walls. In this paper, we implement this method, separately, in single and multilayer 

feedforward artificial neural networks and have been more useful results.  

 

Single-Layer Network  

Consider a single layer feedforward neural networks of k neurons with k-th output as shown in the Figure 2.  

 
Figure 2.  Single layer feedforward neural networks 
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,  is the weighted 

matrix with kxn size is used to denote the strength of the connection from the ith input to the jth processing 

element.,  ib , where ki .....,1 , are the biases for k-th processing unit, in , where ki .....,1 , are the net 

inputs for k-th processing unit if , where ki .....,1 , are the activation functions for k-th processing unit and 

iy , where ki .....,1 , are the outputs for k neurons. Note that the 02010 ,, kwww   are initial weights for k-

th processing unit and 1ox  is the initial input signal. We also consider ii et ,  and iE  where  ki .....,1  

are the target(Desired), error signal and Mean-Square Error ( Sum of Squared Error) function respectively.  

 

We have the following calculations 
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Error Signals: 
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Where kttt ,,1  are target outputs for given neurons in the output layer.                                  (5) 

Mean-Square Error functions: 
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                                                                                                                                                       (6) 

The total error(for n input patterns): 

                                    2
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Multiple-Layer Network 

Consider a three layer feedforward neural networks as shown in the Figure 3.  

 
Figure 3.  Three layer feedforward neural networks 
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We have the following calculations 

Net inputs:                 

1

1

1

1

1

1

1

1

122

1

111

1

1

1

1 .... bxwbxwxwxwn
n

j

jjnn  


 

1

2

1

1

2

1

2

1

222

1

211

1

2

1

2 .... bxwbxwxwxwn j

n

j
jnn

 


 

….                ….                 ….               .…                ….         

1

1

111

22

1

11

11 .... k

n

j

jjkknnkkkk bxwbxwxwxwn  


 

                                                                                                                                         (8) 

Biases: 
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Network Outputs in the hidden layer:  
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From hidden layer  to output layer: 
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From (12) and (13) we have; 
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Network Outputs in the output layer:  

  












 



k

j

jj
ywfnfy

0

12

1

2

1

2

1

2

1

2

1 




















 

 

k

j

n

s

sjsjj xwfwwf
1 0

112

1

2

10

2

1  

  












 



k

j

jj
ywfnfy

0

12

2

2

2

2

2

2

2

2

2 




















 

 

k

j

n

s

sjsjj xwfwwf
1 0

112

2

2

20

2

2  

                       ….                ….                 ….               .…                ….        ….. 

  












 



k

j

jjmmmm ywfnfy
0

1222

2

22






















 

 

k

j

n

s

sjsjmjmm xwfwwf
1 0

1122

0

2
 

                                                                                                                                                       (15) 

Error Signals: 
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The total error in the output layer(for k input patterna): 
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Implementations  

Single layer Network  

From equation (7) we have 
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Using Steepest Descent Method we have the update weight equation is as                    
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Multiple layer networks 

 

From (18) we have  
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Numerical Example  

Consider the single layer feedforward neural networks as shown  in figure 2. Suppose that there are 

2 inputs 6.0,2.0 21  xx ,  W
0
 = 















0

22

0

21

0

12

0

11

ww

ww
 










4.03.0

3.01.0
, is the 2x2 order weighted matrix is used 

to denote the strength of the connection from the input to processing unit., the biases for two  processing units 

are ,1b  2b , the net inputs for two processing unit are 
0

2

0

1 ,nn , 
ne

f



1

1
1 ,

nn

nn

ee

ee
f








2  are the 

activation functions for the processing unit and 21, yy ,  are the outputs for 2 neurons. Note that the 

02.0,01.0 2010  ww  are initial weights for two processing unit and 1ox  is the initial input signal. 

Consider 21 ,ee and 21, EE are the error signals and Mean-Square Error (Sum of Squared Error) functions 

respectively and  8.0,7.0 2,1  tt  are the  target(Desired). Use a step size of   = 10. 

We have the following calculations 

Net inputs:                 

21.0101.03.06.01.02.012

0

121

0

11

0

1  bxwxwn  

32.0102.04.06.03.02.022

0

221

0

21
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Network Outputs:  
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Mean-Square Error functions: 
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2

1 20

1
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1 20

2

0
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The total error (for 2 input patterns): 

                                1312.01203.00109.0

2

0

1

0  EEE total  

To update the weights, we use equation (21) 
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The update weight matrix: 
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Network Outputs:  
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Obviously, 
total

E1
< totalE 0

; that is, the actual output of the neural network has become closer to the target 

output as a result of updating the weights. 

 

II. Conclusion 
A simple but effective description on feedforward artificial neural networks has been made in here 

giving emphasize on the backpropagation algorithm, since it is widely used and many other algorithms are 

derived from it. We have implemented the steepest descent method in single and multiple-layer feedforward 

artificial neural networking problem and set-up a numerical test example. Firstly, We have calculated the total 

error function separately for single and multilayer feedforward artificial neural networks and then calculated the 

three new update weight equations for taking different activation function in different processing unit separately 

single and multilayer feedforward artificial neural networks. The convergence behavior of our example shows 

that the results of the actual network output is as “close” to our desired(target) output.  
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