
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 1 Ver. II. (Feb. 2014), PP 53-61

www.iosrjournals.org

www.iosrjournals.org 53 | Page

The Method of Steepest Descent for Feedforward Artificial

Neural Networks

Muhammad Hanif
1
, Md. Jashim Uddin

2
 and Md Abdul Alim

3

1
Associate Professor

, Department of Applied Mathematics, Noakhali Science and Technology University,

Noakhali 3814, Bangladesh.
2
Lecturer

, Department of Applied Mathematics, Noakhali Science and Technology University, Noakhali 3814,

Bangladesh.
3
Assistant Professor, Chittagong University, Chittagong 4331, Bangladesh.

Abstract: In this paper, we implement the method of Steepest Descent in single and multilayer feedforward

artificial neural networks. In all previous works, all the update weight equations for single or multilayer

feedforward artificial neural networks has been calculated by choosing a single activation function for various

processing unit in the network. We, at first, calculate the total error function separately for single and

multilayer feedforward artificial neural networks and then calculate the three new update weight equations for

taking different activation function in different processing unit separately single and multilayer feedforward

artificial neural networks. An example is given to show usefulness of this implementation.

Keywords: Feedforward Artificial Neural Networks, Back propagation Learning, Activation Functions,

Training.

I. Introduction
 Feed-forward artificial neural networks (FNN) [1-3] have been widely used for various tasks, such as

pattern recognition, function approximation, dynamical modeling, data mining, and time series forecasting. The

training of FNN is mainly undertaken using the back-propagation (BP) [4-5] based learning. The

Backpropagation training algorithm for training feed-forward networks was developed by Paul Werbos[Paul

Werbos84], and later by Parker[Parker85] and Rummelhart [Rummelhart 94] . This type of network

configuration is the most common in use, due to its ease of training. It is estimated that over 80% of all neural

network projects in development use backpropagation. The reason for the name "backprogagation" is that the

output errors are "propagated back" from the output layer to the hidden layer, and are used in the update

equation for the hidden layer weights. There are two phases in its learning cycle, one to propagate the input

pattern through the network and the other to adapt the output, by changing the weights in the network. It is the

error signals that are back propagated in the network operation to the hidden layer(s). The portion of the error

signal that a hidden-layer neuron receives in this process is an estimate of the contribution of a particular neuron

to the output error. Adjusting on this basis the weights of the connections, the squared error, or some other

metric, is reduced in each cycle and finally minimized, if possible. A Back-Propagation network consists of at

least three layers of units: an input layer, at least one intermediate hidden layer, and an output layer. Typically,

units are connected in a feed-forward fashion with input units fully connected to units in the hidden layer and

hidden units fully connected to units in the output layer. When a Back- Propagation network is cycled, an input

pattern is propagated forward to the output units through the intervening input-to-hidden and hidden-to-output

weights.

Figure 1 Structure of a feedforwarded artificial neural network.

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 54 | Page

 The method of steepest descent [7-8] is so popular among many mathematicians: it is very simple,

easy to use, and each repetition is fast. But the biggest advantage of this method lies in the fact that it is

guaranteed to find the minimum through numerous times of iterations as long as it exists. However, this method

also has some big flaws: If it is used on a badly scaled system, it will end up going through an infinite number of

iterations before locating the minimum, and since each of steps taken during iterations are extremely small, thus

the convergence speed is pretty slow, this process can literally take forever! Al- though a larger step size will

increase the convergence speed, but it could also result in an estimate with large error. For example, if there is a

long and narrow valley in the error surface, the component of the gradient in the direction that points along the

base of the valley is very small while the component along the valley walls is quite large. This results in motion

more in the direction of the walls even though we have to move a long distance along the base and a small

distance along the walls. In this paper, we implement this method, separately, in single and multilayer

feedforward artificial neural networks and have been more useful results.

Single-Layer Network

Consider a single layer feedforward neural networks of k neurons with k-th output as shown in the Figure 2.

Figure 2. Single layer feedforward neural networks

 There are n inputs ix , where,1 ni  , W =  























knkk

n

n

ij

www

www

www

w

......

................

........

........

21

22221

11211

, is the weighted

matrix with kxn size is used to denote the strength of the connection from the ith input to the jth processing

element., ib , where ki,1 , are the biases for k-th processing unit, in , where ki,1 , are the net

inputs for k-th processing unit if , where ki,1 , are the activation functions for k-th processing unit and

iy , where ki,1 , are the outputs for k neurons. Note that the 02010 ,, kwww  are initial weights for k-

th processing unit and 1ox is the initial input signal. We also consider ii et , and iE where ki,1

are the target(Desired), error signal and Mean-Square Error (Sum of Squared Error) function respectively.

We have the following calculations

Net inputs:

1

1

1112121111 bxwbxwxwxwn
n

j

jjnn  


The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 55 | Page

2

1

2222221212 bxwbxwxwxwn j

n

j

jnn  


…. …. …. .… ….

k

n

j

jkjknknkkk bxwbxwxwxwn  
1

2211

 (1)

Biases:

10100101 1. wwxwb 

20200202 1. wwxwb 

 …. ….

0000 1. kkkk wwxwb 

  10  x (2)

From (1) and (2) we have;

j

n

j

jnn xwwxwxwxwn 



0

11012121111

 j

n

j

jnn xwwxwxwxwn 



0

22022221212

 …. …. …. .…

 j

n

j

kjknknkkk xwwxwxwxwn 



0

02211

 (3)

Network Outputs:

 













 



n

j

jj xwfnfy
0

11111

  












 



n

j

jj xwfnfy
0

22222

 …. …. ….

  












 



n

j

jkjkkkk xwfnfy
0

 (4)

Error Signals:

111 yte 

222 yte 

 ….

kkk yte 

Where kttt ,,1 are target outputs for given neurons in the output layer. (5)

Mean-Square Error functions:

 2

11

2

11
2

1

2

1
yteE 

 2

22

2

22
2

1

2

1
yteE 

 …. …. ….

 22

2

1

2

1
kkkk yteE 

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 56 | Page

 (6)

The total error(for n input patterns):

     2

21
2

1
nyntEEEEE kk

k

k

k

ktotal    (7)

Multiple-Layer Network

Consider a three layer feedforward neural networks as shown in the Figure 3.

Figure 3. Three layer feedforward neural networks

From input to hidden layer:

There are n inputs ix , where,1 ni  , w
1  























knkk

n

n

ij

www

www

www

w

1
2

1
1

1

2
1

22
1

21
1

1
1

12
1

11
1

........

................

........

........

, is the weighted matrix with

kxn size is used to denote the strength of the connection from the ith input to the jth processing element., There

are k neurons in the hidden layer,
1

jb , where kj,1 , are the biases for k-th processing unit ,
1

jn , where

kj,1 , are the net inputs for k-th processing unit
1

jf , where kj,1 , are the activation functions

for k-th processing unit and
1

jy , where kj,1 , are the outputs for k neurons. Note that the

0
1

20
1

10
1 ,, kwww  are initial weights for k-th processing unit and 11 ox is the initial input signal.

We have the following calculations

Net inputs:

1

1

1

1

1

1

1

1

122

1

111

1

1

1

1 bxwbxwxwxwn
n

j

jjnn  


1

2

1

1

2

1

2

1

222

1

211

1

2

1

2 bxwbxwxwxwn j

n

j
jnn

 


…. …. …. .… ….

1

1

111

22

1

11

11 k

n

j

jjkknnkkkk bxwbxwxwxwn  


 (8)

Biases:

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 57 | Page

0

1

10

1

100

1

1

1

1 1. wwxwb 

0

1

20

1

200

1

2

1

2 1. wwxwb 

 …. .…

0

1

10

1

00

11 1. wwxwb kkk 

  10  x (9)

From (8) and (9) we have;





n

j

jjnn xwwxwxwxwn
0

1

1

1

10

1

122

1

111

1

1

1

1





n

j

jjnn xwwxwxwxwn
0

1

2

1

20

1

222

1

211

1

2

1

2

 …. …. .… ….





n

j

jjkknnkkkk xwwxwxwxwn
0

11

0

1

22

1

11

11

 (10)

Network Outputs in the hidden layer:

  












 



n

j

jj
xwfnfy

0

1

1

1

1

1

1

1

1

1

1

  












 



n

j

jj
xwfnfy

0

1

2

1

2

1

2

1

2

1

2

 …. …. .…

  












 



n

j

jjkkkkk xwfnfy
0

11111

 (11)

From hidden layer to output layer:

There are k inputs
1

jy , where kj,1 , w
2  























22

2

2

1

2

2

2

22

2

21

2

1

2

12

2

11

........

................

........

........

mkmm

k

k

ij

www

www

www

w , is the weighted matrix with

mxk size is used to denote the strength of the connection from the jth input to the sth processing element., There

are m neurons in the output layer,
2

sb , where ms,1 , are the biases for m-th processing unit ,
2

sn , where

ms,1 , are the net inputs for m-th processing unit
2

sf , where ms,1 , are the activation functions

for m-th processing unit and
2

sy , where ms,1 are the outputs for m neurons. Note that the

0

2

0

2

20

2

1 ,, mwww  are initial weights for m-th processing unit and 11

0 y is the initial input signal.

We have the following calculations

Net inputs:

2

1

1

12

1

2

1

12

1

1

22

2

1

1

11

2

1

2

1 bywbywywywn
k

j

jjkk  


2

2

1

1

2

2

2

2

12

2

1

22

2

2

1

11

2

2

2

2 bywbywywywn j

k

j
jkk  



…. …. …. .… ….

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 58 | Page

2

1

122121

22

21

11

22 m

k

j

jjmmkmkmmm bywbywywywn  


 (12)

Biases:

0

2

10

2

1

1

00

2

1

2

1 1. wwywb 

0

2

20

2

2

1

00

2

2

2

2 1. wwywb 

 …. …. .…

0

2

0

21

00

22 1. mmmm wwywb 

 (13)

From (12) and (13) we have;

1

0

2

1

2

10

12

1

1

22

2

1

1

11

2

1

2

1 j

k

j
jkk ywwywywywn 





1

0

2

2

2

20

12

2

1

22

2

2

1

11

2

2

2

2 j

k

j
jkk ywwywywywn 





…. …. …. .… ….

1

0

22

0

121

22

21

11

22 j

k

j
jmmkmkmmm ywwywywywn 





 (14)

Network Outputs in the output layer:

  












 



k

j

jj
ywfnfy

0

12

1

2

1

2

1

2

1

2

1 




















 

 

k

j

n

s

sjsjj xwfwwf
1 0

112

1

2

10

2

1

  












 



k

j

jj
ywfnfy

0

12

2

2

2

2

2

2

2

2

2 




















 

 

k

j

n

s

sjsjj xwfwwf
1 0

112

2

2

20

2

2

 …. …. …. .… …. …..

  












 



k

j

jjmmmm ywfnfy
0

1222

2

22






















 

 

k

j

n

s

sjsjmjmm xwfwwf
1 0

1122

0

2

 (15)

Error Signals:
2

1

2

1

2

1 yte 

2

2

2

2

2

2 yte 

 …. .…
222

mmm yte 

 Where
22

2,

2

1 , mttt  are target outputs for given neurons in the output layer.

 (16)

Mean-Square Error functions:

   22

1

2

1

22

1

2

1
2

1

2

1
yteE 

   22

2

2

2

22

2

2

2
2

1

2

1
yteE 

 …. …. ….

   222222

2

1

2

1
mmmm yteE 

 (17)

The total error in the output layer(for k input patterna):

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 59 | Page

22

2

2

1

2

m

m

mtotal EEEEE      



































 m

k

j

n

s

jsjmjmmm xswfwwfkt

2

1 0

112

0

22

2

1

 (18)

Implementations

Single layer Network

From equation (7) we have

2

1
totalE  

2

0

  




























k

n

j

jkjkk xwfnt (19)

We have;

 




kj

total

w

E
   





























k

n

j

jkjkk xwfnt
0

j

n

j

jkjk xxwf .
0

















 (20)

Using Steepest Descent Method we have the update weight equation is as

 


 p

kj

p

kj ww
1    





























k

n

j

jkjkk xwfnt
0

j

n

j

jkjk xxwf .
0

















 (21)

Multiple layer networks

From (18) we have

 totalE    



































 m

k

j

n

s

jsjmjmmm xswfwwfkt

2

1 0

112

0

22

2

1
 (22)

 



2

mj

total

w

E
    




































 m

k

j

n

s

jsjmjmmm xswfwwfkt
1 0

112

0

22

   























 
 

k

j

n

s

sjsjmjmm xwfwwf
1 0

1122

0

2
 





















 
 

k

j

n

s

sjsj xwf
1 0

11
 (23)

Using Steepest Descent Method we have the update weight equation is as

     p

mj

p

mj ww 212    



































 m

k

j

n

s

jsjmjmmm xswfwwfkt
1 0

112

0

22

   























 
 

k

j

n

s

sjsjmjmm xwfwwf
1 0

1122

0

2






















 
 

k

j

n

s

sjsj xwf
1 0

11

 and

 
 
 

 
1

1

1

2

21
..

kj

k

k

m

m

total

kj

total

w

ny

ny

ky

ky

E

w

E

















   




































 m

k

j

n

s

jsjmjmmm xswfwwfkt
1 0

112

0

22

   
 
























 k

j

mj

k

j

n

s

sjsjmjmm wxwfwwf
1

2

1 0

1122

0

2   j

n

j

jkjk xxwf .
0

11

















Using Steepest Descent Method we have the update weight equation is as

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 60 | Page

     p

kj

p

kj ww 111     



































 m

k

j

n

s

jsjmjmmm xswfwwfkt
1 0

112

0

22

   
 
























 k

j

mj

k

j

n

s

sjsjmjmm wxwfwwf
1

2

1 0

1122

0

2   j

n

j

jkjk xxwf .
0

1

















 (24)

Numerical Example

Consider the single layer feedforward neural networks as shown in figure 2. Suppose that there are

2 inputs 6.0,2.0 21  xx , W
0
 = 















0

22

0

21

0

12

0

11

ww

ww
 










4.03.0

3.01.0
, is the 2x2 order weighted matrix is used

to denote the strength of the connection from the input to processing unit., the biases for two processing units

are ,1b 2b , the net inputs for two processing unit are
0

2

0

1 ,nn ,
ne

f



1

1
1 ,

nn

nn

ee

ee
f








2 are the

activation functions for the processing unit and 21, yy , are the outputs for 2 neurons. Note that the

02.0,01.0 2010  ww are initial weights for two processing unit and 1ox is the initial input signal.

Consider 21 ,ee and 21, EE are the error signals and Mean-Square Error (Sum of Squared Error) functions

respectively and 8.0,7.0 2,1  tt are the target(Desired). Use a step size of  = 10.

We have the following calculations

Net inputs:

21.0101.03.06.01.02.012

0

121

0

11

0

1  bxwxwn

32.0102.04.06.03.02.022

0

221

0

21

0

2  bxwxwn

Network Outputs:

  5522.0
1

1
21.0

0

11

0

1 











e
nfy

  3094.0
32.032.0

32.032.0
0

22

0

2 

















ee

ee
nfy

Error Signals:

1478.05522.07.00

11

0

1  yte

4906.03094.08.00

21

0

2  yte

Mean-Square Error functions:

0109.0
2

1 20

1

0

1  eE

1203.0
2

1 20

2

0

2  eE

The total error (for 2 input patterns):

 1312.01203.00109.0

2

0

1

0  EEE total

To update the weights, we use equation (21)

  0

111

0

11

1

11 nftww     1730.02.02472.01478.0101.0. 1

0

1 


xnf

  0

111

0

12

1

12 nftww     5192.06.02472.01478.0103.0. 2

0

1 


xnf

  0

222

0

21

1

21 nftww     5798.02.02852.04906.0103.0. 1

0

2 


xnf

  0

222

0

22

1

22 nftww     2395.16.02852.04906.0104.0. 2

0

2 


xnf

The update weight matrix:

The Method of Steepest Descent for Feedforward Artificial Neural Networks

www.iosrjournals.org 61 | Page

W
1
 















1

22

1

21

1

12

1

11

ww

ww










2395.15798.0

5192.01730.0

3561.0101.06.05192.02.0173.012

1

121

1

11

1

1  bxwxwn

8796.0102.06.02395.12.05798.022

1

221

1

21

1

2  bxwxwn

Network Outputs:

  5880.0
1

1
3561.0

1

11

1

1 











e
nfy

  7062.0
8796.08796.0

8796.08796.0
1

22

1

2 

















ee

ee
nfy

Error Signals:

112.05880.07.01

11

1

1  yte

0938.07062.08.01

21

1

2  yte

Mean-Square Error functions:

0062.0
2

1 21

1

1

1  eE

0043.0
2

1 21

2

1

2  eE

The total error (for 2 input patterns):

0105.00043.00062.1

2

1

1

1  EEE
total

Obviously,
total

E1
< totalE 0

; that is, the actual output of the neural network has become closer to the target

output as a result of updating the weights.

II. Conclusion
A simple but effective description on feedforward artificial neural networks has been made in here

giving emphasize on the backpropagation algorithm, since it is widely used and many other algorithms are

derived from it. We have implemented the steepest descent method in single and multiple-layer feedforward

artificial neural networking problem and set-up a numerical test example. Firstly, We have calculated the total

error function separately for single and multilayer feedforward artificial neural networks and then calculated the

three new update weight equations for taking different activation function in different processing unit separately

single and multilayer feedforward artificial neural networks. The convergence behavior of our example shows

that the results of the actual network output is as “close” to our desired(target) output.

Acknowledgement
The Noakhali Science and Technology University and the University of Chittagong, for providing a

stimulating environment for research in connection with this article.

References
[1] Adby, P.R. and Dempster, M.A.H. 1974. Introduction to Optimization Methods. Haisted Press, New York.
[2] Battiti, R. 1992. First and second-order methods for learning: Between Steepest Descent and Newton’s methods. Neural

Computation 4: 141-166.

[3] Johansson, E.M., Dowla, F.U. and Goodman, D.M. 1992. Backpropagation learning for multi-layer feed-forward neural networks
using the conjugate gradient method. Intl. J. Neural Systems, 2: 291-301 Judd, J.S. 1990. Neural Network Design and the

complexity of Learning. MIT Press, Cambridge, MA

[5] Muhammad Hanif. 2002. Optimality of Unconstrained Nonlinear Programming Problem. M.Phil Thesis, University of Chittagong,
Chittagong, Bangladesh.

[6] Mehra] P., and Wah, B. W. 1992. Artificial neural networks: concepts and theory IEEE Comput. Society Press,.

[7]. X. Yu, M. O. Efee, and O. Kaynak.2002. A general backpropagation algorithm for feed-forward neural networks learning. IEEE
Trans. Neural Networks. 13:251–254.

[8] X. H. Hu and G. A. Chen.1997. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks

10:517-527.
[9] Zurada, J. M. 2002. Introduction to artificial neural systems. M. G. Road, Mumbai: Jaico.

