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Abstract: This article investigates the strength and limitation of t-test and Wilcoxon Sign Rank test procedures 

on paired samples from related population. These tests are conducted under different scenario whether or not 

the basic parametric assumptions are met for different sample sizes. Hypothesis testing on equality of means 

require assumptions to be made about the format of the data to be employed. The test may depend on the 

assumption that a sample comes from a distribution in a particular family. Since there is doubt about the nature 

of data, non-parametric tests like Wilcoxon signed rank test and Sign test are employed. Random samples were 

simulated from normal, gamma, uniform and exponential distributions. The three tests procedures were applied 

on the simulated data sets at various sample sizes (small, moderate and large) and their Type I error and power 

of the test were studied in both situations under study. 
Keywords: Parametric, t-test, Sign-test, Wilcoxon Sign Rank, Type I error, Power of a test. 

 
I. Introduction 

Nonparametric tests are “distribution-free” methods because they do not rely on any underlying 

mathematical distribution, in other words they are distribution free statistics. The paired sample Wilcoxon 

signed rank test and sign-test are nonparametric methods used in the comparison of the equality of the medians 

of two populations especially when the normality assumption of the data is violated. The test makes use of data 

input from a matched pair. Unlike the paired-sample t-test, the paired-sample Wilcoxon signed rank and Sign 

test do not require the assumption that the populations are normally distributed. So when the normality is 

questionable, the paired sample Wilcoxon signed rank is one of the best tests to use to substitute the paired-

sample t-test. 

In this work we develop some hypothesis tests in situations where the data come from a probability 

distribution whose underlying distribution may be normal or non normal and different sample sizes are 

considered for the each case of a paired sample. If the observations from two samples are related, then we have 

paired observations. Examples of paired observations include: 

(i) The same subjects measured for a characteristic on two occasion such as    

  before and after receiving a treatment 

(ii) Performance of a student in his year 1 and 2 

(iii) Effectiveness of a method over control. 

In non parametric tests, it will not be assumed that the underlying distribution is normal, or exponential, or any 

other given type. Because no particular parametric form for the underlying distribution is assumed and example 

of such tests for one or two sample locations are Wilcoxon sign ranked and sign tests. The strength of a 

nonparametric test resides in the fact that it can be applied without any assumption on the form of the underlying 

distribution. It is good for data with outliers and work well for ordinal data (data that have a defined order) 

because it based on ranks of data.  

Of course, if there is justification for assuming a particular parametric form, such as normality, then the 

relevant parametric such as t-test should be employed. The focal point of parametric test is some population 

parameters for which the sampling statistics follows a known distribution, with measurements being made at the 

interval or ratio scale. When one or more of these requirements or assumptions are not satisfied, then non-

parametric methods can be used, which focuses particularly on the fact that the distribution of the sampling 

statistics is not known ([1]). 

 In non-parametric tests very few assumptions are made about the distribution underlying the data and, 

in particular, it is not assumed to be a normal distribution. Some statisticians prefer to use the term distribution-

free rather than non-parametric to describe these tests ([2]). Non-parametric statistical tests are concerned with 

the application of statistical data in nominal or ordinal scale to problems in pure science, social science, 

engineering and other related fields.  Most of the present analysis carried out by non science and science 
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oriented researchers are based on parametric test, and it is often reasonable to assume that observations come 

from a particular family of distributions. Moreover, experience backed by theory, suggest that for 

measurements, inferences based on the assumption that observations form a random sample from some normal 

distribution may not be misleading even if the normality assumption is incorrect, but this is not always true 

([3]). 

Nonparametric tests often are used in conjunction with small samples, because for such samples the 

central limit theorem cannot be invoked. Nonparametric tests can be directed toward hypothesis concerning the 

form, dispersion or location (median) of the population. In the majority of the applications, the hypothesis is 

concerned with the value of a median, the difference between medians or the differences among several 

medians. This contrasts with the parametric procedures that are focused principally on population means. If 

normal model cannot be assumed for the data then the tests of hypothesis on means are not applicable. 

Nonparametric tests were created to over come this difficulty. Nonparametric tests are often (but not always) 

based on the use of ranks; such as Wilcoxon rank test, Sign test, Wilcoxon rank sum test, Kruskal wallis test, 

Kolmogorov test, etc ([4], [5]).  

 

The objectives of this paper are of two folds: 

i. To examine the effect of non-normality on parametric t-test and the non-parametric tests of the  

 Wilcoxon sign rank test and Sign test effect.   

ii. To examine the effects of sample size on the three test procedures based on type I error and power 

 of test.  

 
II. Materials And Methods 

The materials used for the analysis were generated data using simulation procedures from the required 

distributions. Since it is very difficult to get data that follows these distribution patterns, even if there is, it is 

very difficult to get the required number of replicates for the sample sizes of interest. The parametric (t-test) and 

nonparametric (Wilcoxon signed rank test and Sign-test), methods of analyzing paired sample were applied, to 

compare the performance of each test on the generated data from the Normal, Uniform, Exponential and 

Gamma distributions based on the underlying criteria for assessment   

 

2.1 Simulation Procedures and Analysis 

Random samples were simulated from Normal, Uniform, Gamma and Exponential distributions 

respectively for sample size of 5 10, 20, 25,  30 and 40 which considered as small moderate and large sample 

sizes respectively. Each test procedures were applied on the data sets at varying sample sizes and their Type I 

error and power of the tests were studied in each situation. At every replicate two samples were simulated 

simultaneously from each distribution using the same parameters to form the paired sample from the same 

family. The process was repeated 500 times for each sample size considered and results were displayed in Table 

1-5. 

 

2.2 Criteria for Assessment and Test of Significance 

 Some decision must often be made between significance of a test or not. Turning the p-value into a 

binary decision allows us to examine two questions about the comparative value of statistical tests: 

1. What percent of significant results will a researcher mistakenly judge to be in significant? 

2.  What percent of reported significant results will actually be in significant? 

 Indeed the number of rejecting H0 when it is true is counted for Type I error and  number of times  H0 

is accepted when it is true was recorded as power of the test from each statistic under study.  

 

2.3 Student’s Paired t-test 

The t-test‟s null hypothesis is that systems A and B are random samples from the same normal 

distribution. The details of the paired t-test can be found in most statistics texts (such as [6]).  

In this case, we use the differences between the individual pair says xi and yi on individual i such that: di = xi - yi  

and  

             (1) 

where is the mean of the sample differences and  is the standard deviation of the sample differences. 

Under Ho: μd = 0 (i.e. hypothesis of no difference). Note that the null hypothesis may also be in the form μd = μ0 

when we wish to know if the difference is a given value μ0. The t-test strictly assumes that the observations in 

the sample have come from a normally distributed population. The t-test also requires the observation be 

measured at least in an interval scale ([7]). Meanwhile, the Sign and Wilcoxon test provided a means to test “the 
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wider hypothesis in which no normality distribution is implied”, our contention here was that if the p-value 

produced by the t-test in any distribution was close to the p-value produced by the sign and Wilcoxon tests, then 

the t-test could be trusted. In practice, the t-test has been found to be a good when the assumption of normality is 

found.  

 

2.4 The Wilcoxon Signed Rank Test 

The null hypothesis of the Wilcoxon signed rank is the same as the sign test ([8]), i.e. both tests test 

hypothesis about the median. Whereas the sign test does not take the magnitude of the observation into account 

the Wilcoxon signed rank test does. The Wilcoxon test statistic takes the paired score differences and ranks 

them in ascending order by absolute value. The sign of each difference is given to its rank as a label so that we 

will typically have a mix of “negative” and “positive” ranks. For a two-sided test, the minimum of the sums of 

the two sets of ranks is the test statistic. Differences of zero and tied differences require special handling ([8]).  

 The Wilcoxon test statistic throws away the true differences and replaces them with ranks that crudely 

approximate the magnitudes of the differences. This loss of information gained computational ease and allowed 

the tabulation of an analytical solution to the distribution of possible rank sums. One refers the test statistic to 

this table to determine the p-value of the Wilcoxon test statistic. For sample sizes greater than 25, a normal 

approximation to this distribution exists ([8]). 

It denotes S+ to be the sum of positive ranks and S- the sum of negative ranks. 
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2.5 Sign-Test 

Like Wilcoxon tests, the sign test has a null hypothesis that systems A and B have the same distribution 

([8]). The test statistic for the sign test is the number of pairs for which system A is different from system B. 

Under the null hypothesis, the test statistic has the binomial distribution with the number of trials being the total 

number of pairs. The number of trials is reduced for each tied pair. [9] proposed that a tie should be determined 

based on some set absolute difference between two scores ([9]). 

The sign test allocates a sign to each observation according to whether it lies above or below some 

hypothesized value, and does not take the magnitude of the observation into account. The sign-test does not 

specify any underlined distribution and therefore it is a distribution free statistics. The observations are 

continuous variable with atleast an ordinal scale. When testing H0: md = 0 against H0: md  0, we let x and y to 

be number of first and second observations, respectively observed from the same population and we obtain di = 

xi – yi. Then, we count the number of positive di and represent it by T
+ 

, if di = 0, we remove the observation 

from the sample and reduce the sample by one. We reject H0 if T
+ 

lies outside the confidence interval i.e critical 

value from Binomial table, otherwise we do not reject H0. 

 
III. Data Analysis 

A fixed significance level of 5% was selected for  H0: μd = 0. In other words, the mean was the same 

from the paired sample against 0:1 dH  , the mean was not the same for the paired sample, where µd 

represents the value of the average of the deviation between the two sets of the paired sample from each 

distribution of the sample size of interest. The test was carried on the 500 paired samples generated for each 

parameter of the distributions. We count the number of times we correctly accept H0 for fixed H0‟s to provide 

the power of the test and wrongly reject the fixed value of H0
 
to determine the Type I error. These are recorded 

as probabilities for the four statistical tests, under the Normal, Uniform, Exponential distributions and Gamma. 

1 if Zi > 0 

 
0  if Z < 0 

0 if Zi > 0 

 
1   if Zi < 0 
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For example, for the normal distribution, H0:μd = 0 against H1:μd ≠ 0 for different values of generated μ, for the 

Uniform distribution H0:μd = 0 against H1:μd ≠ 0 and for the exponential distribution H0:μd = 0.5 against H1:μd ≠ 

0.5, all for different values of generated μ. The test was carried out on the 500 samples generated for each μd and 

each distribution and were recorded as probabilities for the two statistical tests under each of the given 

distributions. Averages of power of the test for the levels of the population means were calculated and recorded 

for each of the sample size under the four given distributions for the three statistical tests. These averages 

presented in Tables 1, 2, 3 and 4. 
Table 1: Relative Frequencies of Acceptance of the Null Hypothesis 

H0: μd = 0 from Data Generated from Normal Distribution 

Test Statistic 

Sample 

size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.9560 0.8900 0.9020 
10 0.9760 0.8600 0.8980 

15 0.982 0.8500 0.8840 

20 0.9660 0.7980 0.8020 
30 0.9980 0.6640 0.7780 

40 0.9540 0.5100 0.6040 

Average 0.9720 0.762 0.8113 

 

Table 2: Relative Frequencies of Acceptance of the Null Hypothesis 

H0: μd = 0.2 from Data Generated from Gamma Distribution 

Test Statistic 

Sample 
size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.7940 0.9960 0.9960 

10 0.8120 0.9860 0.9960 
15 0.8220 0.9860 0.9980 

20 0.8200 0.9800 0.9840 

30 0.9000 0.8160 0.8040 
40 0.7600 0.760 0.7740 

Total 0.818 0.9467 0.9281 

 

Table 3: Relative Frequencies of Acceptance of the Null Hypothesis 

H0: μd = 0.5 from data generated from Exponential Distribution 

Test Statistic 

Sample 

size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.7980 0.9940 0.9960 

10 0.8200 0.9880 0.9980 

15 0.8220 0.9860 0.9980 
20 0.8200 0.9800 0.9980 

30 0.9060 0.8000 0.9980 

40 0.9080 0.7440 0.8040 

Total 0.8457 0.9467 0.9660 

 

Table 4: Relative frequencies of acceptance of the null hypothesis 

H0: μd = 0 from data generated from Uniform Distribution 

Test Statistic 

Sample 

size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.8000 0.9800 0.9840 

10 0.9020 0.9960 0.9880 
15 0.9340 0.9860 0.9940 

20 0.9560 0.8060 1.000 

30 0.7980 0.8080 0.8400 
40 0.7600 0.760 0.8160 

Total 0.8583 0.8893 0.9437 

 

Table 5: Relative frequencies of Rejection of the null hypothesis 

H0: μd = 0 from data generated from Normal Distribution 

Test Statistic 

Sample 
size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.0400 0.0280 0.0480 

10 0.0440 0.0320 0.0480 

15 0.0440 0.0460 0.0460 
20 0.0435 0.0420 0.040 

30 0.0380 0.0360 0.0360 

40 0.0340 0.0380 0.0340 

Average 0.0406 0.0370 0.0420 
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Table 6: Relative frequencies of Rejection of the null hypothesis 

H0: μd = 0.2 from data generated from Gamma Distribution 

Test Statistic 

Sample 

size(n) 

t-test Sign-test Wilcoxon Sign Rank 

Test 

5 0.1140 0.0520 0.0520 

10 0.1080 0.0620 0.0580 
15 0.0960 0.0820 0.0760 

20 0.018 0.1100 0.0780 

30 0.078 0.1040 0.0840 
40 0.0820 0.138 0.1240 

Total 0.0827 0.0913 0.0787 

 

Table 7: Relative frequencies of Rejection of the null hypothesis 

H0: μd = 0.5 from data generated from Exponential Distribution 

 

 

Table 8: Relative frequencies of Rejection of the null hypothesis 

H0: μd = 0 from data generated from Uniform Distribution 

Test Statistic 

Sample 
size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.0700 0.0260 0.0300 

10 0.0580 0.0280 0.0320 

15 0.0520 0.0600 0.0300 
20 0.0440 0.0600 0.0640 

30 0.0240 0.0820 0.0760 

40 0.0550 0.0980 0.1020 

Total 0.0505 0.0427 0.0557 

 
IV. Discussion Of Results 

Tables 1 – 8 indicate results of analyses using the paired t-test, Sign-test and Wilcoxon signed rank test 

on how the tests perform based on the type I error and power of the test, both being compared at the 5% level of 

significance for two tailed test in each case. The average of each value of the type I error and power of the test 

were calculated and recorded under each statistical test for easy comparison. 

The power of the t-test increases as sample size increases from data generated from the three 

distributions with value from 0.9560 to 0.9880 from normal of sample size of 5 to 30 respectively but started to 

decreases when sample size of 40 was used. However, the power of the paired sample Wilcoxon signed rank test 

and the sign test decreases as the sample size increases from 5 to 40 with the lowest values at sample sizes 40 as 

shown in Table 1-4. More so, the type I error of the t-test decreases from the three distributions and started to 

increase at sample size of 40 as we can see in the Table 5 – 8. However, the two nonparametric tests increase in 

the Type I error from the lowest power to the highest from each distribution under study. 

The t-test test has the highest power from the data generated from normal distribution as shown in 

Table 1 followed by Wilcoxon Sign test. In the data generated from gamma distribution Sign test has the highest 

power followed by Wilcoxon test while the Wilcoxon Sign test has the highest power from exponential and 

uniform distribution especially from sample size of 5 to 40.  The Wilcoxon Sign test has the lowest Type I error 

from normal while the t-test has the highest. The sign test has the lowest Type I error from other distributions 

followed by the Wilcoxon Sign test especially at the sample size less than 40 (see Table 5-8) 

 

4.1 Conclusion 

It was observed that the Sign test closes to „(1- β)‟ from the data generated from uniform distribution 

and therefore consider as the most powerful test in that respect while  Wilcoxon Sign Rank test is the closest to 

„(1- β)‟ from the data generated from exponential and uniform especially for small sample sizes and considered 

as the most powerful test for that distributions. However, there is no significant differences in the power of the 

two tests when rounded to two decimal places, if they are compared based on the simulated data from the four 

selected distributions, using small sample sizes at the 5% levels of significance. Meanwhile the t-test is the most 

suitable test when the underline distribution is normal and when sample sizes are large for any distributions as 

Test Statistic 

Sample 

size(n) 

t-test Sign-test Wilcoxon Sign Rank Test 

5 0.0820 0.0360 0.0460 
10 0.0685 0.040 0.0500 

15 0.057 0.0605 0.0760 

20 0.0533 0.055 0.0740 
30 0.0635 0.0585 0.0860 

40 0.055 0.0675 0.1200 

Total 0.0632 0.0529 0.0753 
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reported in the Table 1-8. However the two nonparametric tests are indeed alternative tests to t-test when the 

assumption of normality is not met.  
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