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Abstract: We discuss the effect of radiation on unsteady MHD free connective flow through a porous medium
in a vertical channel .The unsteadiness in the flow is due to the traveling thermal wave imposed on the wall y =
L . A uniform magnetic field of strength Ho is applied normal to the boundaries. The coupled equations
governing the flow and heat transfer have been solved by using a perturbation technique with the aspect ratio
as perturbation parameter. The expression for the velocity, the temperature, the shear stress and the rate of
heat transfer are derived and are analysed for different variations of the governing parameters G,R,M,« and y
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. Introduction:-

The energy crisis has been a topic of great importance in recent years all over the world .This has
resulted in an unabated exploration for new ideas and avenues in harnessing various conventional energy
sources like tidal waves, wind power and geothermal energy .1t is well known that in order to harness maximal
geothermal energy one should have complete and precise knowledge of quanta of perturbation needed to initiate
convection currents in mineral fluids embedded in the earth’s crest enables one to use mineral energy to extract
the minerals .For example, in the recovery of hydrocarbons from underground petroleum reservoirs, the use of
thermal processes is becoming important to enhance the recovery. Heat can be injected into the reservoir as hot
water or steam or heat can be generated inside by burning part of the reservoir crude.

In the theory of flow through porous medium, the role of momentum equations or force balance is
occupied by the numerous experimental observations summerised mathematically as the Darcy’s law. It is
observed that the Darcy’s law is applicable as long as the Reynolds number based on average grain(pore)
diameter does not exceed a value between 1 and 10.But in general ,the speed of specific discharge in the
medium need not be always low. As the specific discharge increases, the convective forces get developed and
the internal stress generated in the fluid due to its viscous nature produces distortions in the velocity field. Also
in the case of highly porous media such as fiber glass, Pappas of dandelion etc., the viscous stress at the surface
is able to penetrate into media and produce flow near the surface even in the absence of the pressure gradient.
Thus Darcy’s law which specifies a linear relationship between the specific discharge and hydraulic gradient is
inadequate in describing high speed flows or flows near surfaces which may be either permeable or not. Hence
consideration for non-Darcian description for the viscous flow through porous media is warranted. Saffman (6)
employing statistical method derived a general governing equations for the flow in a porous medium which
takes into account the viscous stress. Later another modification has suggested by Brinkman (1)

0=-Vp- (f)v + UV

in which ,uV2\7 is intended to account for the distortions of the velocity profiles near the boundary. The same

equation was derived analytically by Tam (7) to describe the viscous flow at low Reynolds number pasra swam
of small particles. By using Darcy’s law Yamamoto and Yoshida(8) considered suction and injection flow with
convective accelerations through a plane porous wall specifically for flow outside a vortex layer. The
generalization of the above study was presented by Yamamoto and Iwamura (9).Chawla and Singh(2) studied
oscillatory flow past a porous bed. The steady two-dimensional flow of viscous fluid through a porous medium
bounded by porous surface subjected to a constant suction velocity by taking account of free convection
currents( both velocity and temperature fields are constant along x-axis)was studied by Raptis et al., (4).

There is an extensive literature on free convection in porous media ,i.e ,flows through a porous media
under gravitational fields that are driven by gradients of fluid density caused by temperature gradient.

Convection fluid flows generated by traveling thermal waves have also received attention due to
applications in physical problems. From a physical point of view, the motion induced by traveling thermal
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waves is quite interesting as a purely fluid-dynamical problem and can be used as a possible explanation for the
observed four-day retrograde zonal motion of the upper atmosphere of Venus. All the above mentioned
studies are based on the hyphothesis that the effect of dissipation is neglected. This is possible in case of
ordinary fluid flow like air and water under gravitational force .But this effect is expected to be relevant for
fluids with high values of the dynamic viscosity flows. Moreover many have studied the effect of viscous
dissipation on the convective flows past an infinite vertical plate and through vertical channels and ducts.

The effect of viscous dissipation on natural convection has been studied for some different cases
including the natural convection from horizontal cylinder embedded in a porous media by Fand and
Brucker(3).Ravindra(5) has analysed the effect of traveling thermal wave on MHD convective flow of a viscous
electrically conducting fluid through a porous medium in a vertical channel.

Il.  Formulation Of The Problem:-

We consider the motion of viscous, incompressible fluid through a porous medium in a vertical
channel bounded by flat walls . The thermal buoyancy in the flow field is created by a traveling thermal wave
imposed on the boundary wall at y =L while the boundary at y = -L is maintained at constant temperature T;.
The Boussinesq approximation is used so that the density variation will be considered only in the buoyancy
force. The viscous and Darcy dissipations are taken into account to the transport of heat by conduction and
convection in the energy equation. Also the kinematics viscosity v,the thermal conducting k are treated as
constants. We choose a rectangular Cartesian system 0 ( x ,y ) with x-axis in the vertical direction and y-axis
normal to the walls.The walls of the channel are at
y=t L.

The equations governing the unsteady flow and heat transfer are
Equation of continuity

8_u+@:0 (2.1)
ox oy
Equation of linear momentum
ou ou au op o’u  ou r
—+U—+V—)=——+ p(—5+—)— 09 ——(-)u
Pl T s ) T T T e Ty ) 22)

N v, op 0N AN

e A R

+_
o ox oy oy ox> oy’ (23)
Equation of Energy:-
2 2
,oecp(ﬁ+uﬁ+v£)=ﬂb(a 12- +8 -IZ-)JrQ—ai
ot OX oy ox® oy oy (2.4)

+u«%“)2 D)+ (L) +v)
Equation of state :-
P~ Pe :_ﬂpe(T_Te) (2-5)

where 0, is the density of the fluid in the equilibrium state, are the temperature in the equilibrium

state,(u,v)are the velocity components along O(X,y) directions, p is the pressure, T is the temperature in the flow
region,pis the density of the fluid,u is the constant coefficient of viscosity ,Cp is the specific heat at constant
pressure,Ais the coefficient of thermal conductivity ,k is the permeability of the porous medium ,fB is the
coefficient of thermal expansion, Q is the strength of the constant internal heat source and g, is the radioactive
heat flux.

By Rosseland approximation(3a) the radioactive heat flux is given by
g = 4c° OT'*
L=
36, oy

and by Taylor’s approximation we have

(2.6)
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T =41°T -3T. @.7)
after neglecting higher powers of T.
In the equilibrium state

op
0O=——"%- 2.8
o Ped (28)

where P = P, + Pp, Pp being the hydrodynamic pressure.
The flow is maintained by a constant volume flux for which a characteristic velocity is defined as

1t q
=— U . 2.9
Q=2 7IL y (2.9)
The boundary conditions for the velocity and temperature fields are
u=0,v=0 ,T=T; ,C=C,; ony=-L
u=0, v=0,T =T, + AT, Sin(mx+nt),C=C, ony=L (2.10)

where AT, =T, —T, and Sin(mx+ nt) is the imposed traveling thermal wave
In view of the continuity equation we define the stream function v as

u=-y yo V=yy
Eliminating pressure p from equations (2.2)&(2.3)and using the equations governing the flow in terms of y are
1%
(V) +w, (Vi) —w, (Vi) 1=W'y - Bg(T -T,), ——(E)Vzw (2.11)
00 Oy 00 Oy 06 0°
Py (S T T) = 2+ () +

oy Ox Ox oy OX (2.12)

u., 0w ., 0w, 160°T2 8°T

(N )N+ ——
oy 3Br Oy’
Introducing the non-dimensional variables in (2 .9 )& (2.10) as
X' = mx, y':y/L,t':tvmz,\lf’:\P/v,é?z-r_T2 (2.13)

e
the governing equations in the non-dimensional form ( after dropping the dashes ) are

RE(Viy), + %) = Jr(%)ély -D'Viy (2.14)
and the energy equation in the non-dimensional form is
0 oy 00 Oy 00 PR? EC
P W0 WDy g, o PRE @Yy 5 ( )2+
at ay X OX oy oy’
0 0 4.0% 219
+D (L) + (2 ‘”) )+
OX oy 3N ay
where
3
R= % (Reynolds number), G= ﬂgA# (Grashof number),
1% 1%
2
P= ,uk_cp ( Prandtl number), D*= L? (Darcy parameter),
1
3
E. = ﬂé]L (Eckert number), o=mL (Aspectratio),
p
n 3ﬂR
¥ = — (non-dimensional thermal wave velocity), N —y (Radiation parameter),
m 4o'T

3
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~ 3NP o = 3Na
' 3N+4 ' 3N+4
62 82
2 2
Vl =0 2 + ~ 2 The corresponding boundary conditions are
ox® oy w(+) — (1) =1
a—W:O, a—W:O aty ==+1 (2-16)
OX oy
o(x,y)=1 ,C=0 on y=-1
d(x,y) =Sin(x+x%),C =1
%:0,@=0 at y=0 (2.17)
oy oy

The value of y on the boundary assumes the  constant volumetric flow in consistent with the hypothesis
(2.7) .Also the wall temperature varies in the axial direction in accordance with the prescribed arbitrary
function t .

I11.  Analysis Of The Flow:-
The main aim of the analysis is to discuss the perturbations created over a combined free and forced
convection flow due to traveling thermal wave imposed on the boundaries. The perturbation analysis is carried

out by assuming that the aspect ratio o to be small.
We adopt the perturbation scheme and write

w(X Y, 1) =w (X, Y, 1)+ 0w (X, V,1)+ 8%y (% y,1)+.

(X, y,t)=6,(X, Y, )+ 5 0,(X, ¥, 1)+ 52 6, (X, y, 1)+ (3.1)

On substituting ( 3.1) in (2.13) - (2.15) and separating the like powers of & the equations and respective
conditions to the zeroth order are

Yo, yyyyy ~ Mlzl//O, yy =G (0, +NC, ) (3.2)
PE,R? PE (D +M?
R e (DRt @9
with — yo(+1)-¥(-1) =1,
\yoyy=0,\|loyx=0 aty=+1 (34)
0, =1 on y=-1
(3.5)

6, =Sin(x+t) on y=1

and to the first order are

vy, yYyyyy _M12W1, yy :_Gey +(l//0, y ¥, Xyy ¥, x [/lo,yyy ) (3.6)
2PE,R? 2PE.D™
91.yy =(l//o,X6’O’y _l/jo,yeox) + lG (Vlo,yy'l//l,yy) + : G (l//o,y'l//l,y) (3-7)
With  y41y-y11)=0
\VlvyZO,\VLX:O aty:il (38)
0,(x1)=0 aty=+1 (3.9)

Assuming Ec<<1 to be small we take the asymptotic expansions as
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Wo(X, Y, 1) =woo (X Y, 1) + ECyoy (X, Y, t) + s
v (XY, D)=w, (X, y, )+ ECy (X, Y, 1)+ e

O, (X, Y,1) =0 oo(X, ¥, 1) + G, (X, y, 1) +..
G,(X,y,1) =0 (X, Y, 1)+ 0, (X, Y, 1) + e

(3.10)

Substituting the expansions(3.10) in equations (3.2)-(3.9)and separating the like powers- of Ec we get the

following
G0y =— y Opo(—1) =1,6,,(+1) =SinD, (3.11)
Yoo,y — M12V/00,W =-G 000,y ,
(3.12)
Woo(+D) —w o (-1 =1, Yooy =0Wox =0 at y==1
PR , PD* ,
00Lyy z_lTl// 00,yy — 1G Yoo,y J 901(i1):0 (3.13)
Yorywy — Mlzl//OLyy = _Geoly
You(+t) -y, (=) =0y, =0y, =0 at y==1 (3.14)
elo,yy = (‘//oo,y‘goo,x - '//oo,xeoo,y) 0,,(x1) =0
(3.15)
Vioww — M 12 Vioy = -G 010,y + ('//oo,y‘/’oo,xyy - V/oo,xV/oo,yyy) '
Wio(+1D) —yy,(=1) =0, Viy = Opyo,=0aty=+1
(3.16)
2P R?
Hllyy = (‘//oo,ygolx - '//oLxgoo,y + eoo,xl//oly - 001,yl//0,x)_ lT Yoo,yy¥W10,vy
(3.17)
2PD™
- lG YooyWioy » 6,(£1) =0
Vityy — M12 Wiy=-G0O, + (WOO,lenyy ~WooxWoryy TWoryWooxy — W01.xWoo,yyy) ’
(3.18)
Wy, (+1) =y, (-1) =0, Viy = 0, Viix = 0aty=+1
V. Solution Of The Problem:-
Solving the equations (3_.11)— (3.18) subject to the relevant boundary conditions we obtain
Ou0 (v, 1) = (Ea— y?) + GBIy SINED 2L,
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Sh(Ay )
B,

y* , Chsy)

y°
Y CN(A) + 58 g = ¥) +14a, (- + - oS

Yoo (Y, 1) = as( )

5, (Y, 1) = Db, y* +b,Ch(24,y) +b,,Sh(24,y) + b13y6 + b16y8 +b,y’ + b,g y® +

+ by +b,oy +Db,,;Sh(B,y) +b,,Ch(B,y) + b43y5
W01(th) = d1 + dzy + PRZ (_dsSh(2ﬂ1y) - dloy10 - d15y3Sh((Zﬁly)) +

+ P,D " (—d,;Sh(28,y) + dgoy*? +dg,¥° +d;Ch((28,y) + d,Ch(5,y) +

+doSh((B,Y) +d,oy° +d, vyt +d,,y* +d,y°
B,,(y,t) = —d . (YCh((B,Y) —Ch(B,)) +d s (y° — ¥) +d s (Sh(B,y) — ySh(5,)) +

-+ d47 (Ch(ﬂly) 7Ch(ﬂ1)) - d48(y2 *1) + d49 (y7 - y) -+ d50(y6 *1) - d51(y3 - y)
011 =hg; + NggSh(B,Y) + heeCh(B,Y) + h;Sh(28,Y) + hsCh(28,Y) +

+ hely9 + hezys + h63y7 + hz7y6 + hzsys + hemy4 + h48y3 +h,y

are constants given in the appendix.

V. SHEAR STRESS And NUSSELT NUMBER:-
The shear stress on the channel walls is given by

ou ov
T=H _+_X y=*L

oy 0O
which in the non- dimensional form reduces to
v
H 2
T= (T) = (l//yy _5 !//xx)

= [Woo,yy +Ec Vory T 5(V/10,yy +Ec Wity + 0(52 )] y=+1
and the corresponding expressions are

(7),_., =d; +Ecd, + & +O(5?)
(), =ds +Ecd, + &g +O(5?)
The local rate of heat transfer coefficient( Nusselt number Nu) on the walls has been calculated using the

formula Nu—_ T ( o9 )
On =0, 0y "

1
where 0, =0.5[ody
-1
and the corresponding expressions are

_ (m  + Ecm, +o6m;)
=+1 —
Y (m, + Ecmg + dmg)

_ (m, + ECcmg +omy)
=1 —
4 (m,, + Ecmg + 8my)

(Nu) (Nu)

where M, M, ..o, ,M,, are constants given in the appendix.
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VI.  Discussion Of The Results:-

The aim of this analysis is to discuss the effect of the dissipation on the convective flow and heat
transfer of a viscous fluid through a porous medium confined in a vertical channel on whose walls a traveling
thermal wave is imposed. Assuming the Eckert number E.<<1 the coupled momentum and energy equations
have been solved. The velocity and temperature distributions are analysed for different sets of the governing
parameters G, R, D%, N, a and A and their profiles are plotted in fig 1 — 10. In the following discussion we use
the notation that the channel walls are heated or cooled according as G > 0 or G < 0. We set & = 0.01. The actual
axial flow is in the vertically downward direction and hence u > 0 represent reversal flow. Fig. 1- 3 represent in
G, R, D% N, aand A. For G > 10°, in fig-1, we find that lesser the permeability of the porous permeability
larger |u| in the flow region. From fig. 2 we find that |u| reduces with increase in y and the region of reversed
flow shrinks in its size with increase in y. An increase in the phase x + yt of the boundary temperature reduces u
in the left half and in the right half it redness with x + yt < n/2 and enhances with higher x +yt >« [fig 3].

The non-conformity in the boundary temperature gives rise to a secondary velocity (v) in a direction
normal to the boundary. The variation of v with D reveals that lesser the permeability of the porous medium
lesser |v| except in the region (-0.4, 0) in which |v| depreciates and for further lowering of the permeability
larger |v| in the left half and smaller |v| in the right half of the changed [fig 4]. An increase in o leads to an
enhancement in |v| [fig 5]. The variation of v with Ec shows that as increase in Ec enhance |v| in the left half and
depreciates |v| in the right half of the charged (fig-6). From fig-7,8 we find that for radiation parameter N < 10
the secondary velocity in the left half is towards the mid region and is towards boundary in the right half. For
higher N > 10, v is towards the boundary. Also |v| experiences an enhancement with increase in N in the entire
flow region [fig 7].

The temperature distribution () for different D™, G, N, a, Ec, x + vyt is depicted in figs (8 — 10). It is
found that 6 is always positive except in a narrow region and is maximum in the mid-region adjacent to n = +1
[fig 8] represents the temperature with G. It is found that the temperature gradually rises from its value ‘O’ on n
= -1 attains maximum at n = 0 and then falls to its prescribed value (-1) at n = +1. The temperature reduces
with increase in |G| (S 0). . An increase in o < 4 reduces and its enhances with a. > 6 (fig 9). An increase in the
radiation parameter N < 1.0 reduces 6 in the flow region and for further N > 10, it enhances in the entire region
[fig 10].

The shear stress (t) at n + 1 have been evaluated for different value of G, D, o, v, N and x + yt and
are shown in tables (1-2). It is found that |(t)| experiences an enhancement with increase in |G| (S 0). The
variation of (t) with D™ shows that lesser that the permeability of the porous medium larger |t| and for further
lowering of permeability smaller |t| and at ) = - 1 larger |t|. An increase in the enhances the magnitude of t at
both the walls. Also it enhances with phase velocity y [Table 1 and 2]. The Nusselt number (Nu) is shown in
table (3 — 4) for different parametric values. It is found that the rate of heat transfer depreciate with |G| (S 0).
Also lesser the permeability of medium or higher the strength of heat sources larger the rate of heat transfer at
n == 1. Also it enhances with increasing in y at both the walls [table 3, 4].

’
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Table-1
Sheer Stress () aty =+1

G I Il 1T v Vv VI
10° -351284 | -3.765897 | -3.487655 | -3.734573 | -4.134573 -6.591499
3x10° | -5.251933 | -6.75838 | -6.113057 | -6.844299 | -19.99602 -20.99602
-10° | -0.041984 | -0.780955 | -1.061721 | -7.51211 | 7.887514 8.187514
-3x10° | 3.769490 | 2.203987 | 1.164749 | 2.105787 | -73.02007 -7.404007

D! 10° 3x10? 5x10? 10° 10° 10°

a 2 2 2 4 6 8
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Table -2
Sheer Stress (t) aty=-1
G I 1l 1 v \Y; VI
10° 0.2676 1.721 5.405 1.784 2.784 3.07
3x10° -3.206 -4.249 0.1538 -4.436 -6.6156 -0.6156
-10° 7.214 7.691 10.26 7.751 7.95 7.45
-3x10° 14.84 13.66 1471 13.46 16.56 23.56
D 102 3x10° 5x10° 10% 102 102
o 2 2 2 4 6 8
2 2 2 2 2 10
Table-3
Nusselt Number (N aty=+1
G I Il 1T v Vv Vi
10° | -0.872153 | -1.346310 | -2.743751 | -1.346306 | -1.346310 | -2.905352
3x10° | -0.860067 | -1.343156 | -2.743631 | -1.343142 | -2.587613 | -2.587613
-10° | -0.871738 | -1.345917 | -2.743431 | -1.345922 | -2.909039 | -2.909039
-3x10° | -0.858810 | -1.341975 | -2.742672 | -1.341988 | -2.588409 | -2.588409
D* 10° 3x10° 5x10° 10° 10° 10°
a 2 2 2 4 6 2
v 2 2 2 2 2 10
Table -4
Nusselt Number (Nu) aty=-1
G | 1] i v \Y, VI
10° -0.37404 | -1.575566 | 9.839230 | -1.575577 | 1575566 3.587615
3x10° | -0.016277 | -1.563764 | 9.834631 | -1.563798 | 25622230 | 26.622230
-10° -0.036516 | -1.573224 | 9.844671 | -1.573213 3557781 4557781
-3x10° | -0.013641 | -1.556769 | 9.850973 | -1.556736 | 24423540 | 26.423540
D 20 30 50 107 102 102
o 2 2 2 4 6 2
v 2 2 2 2 2 10
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