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I. Introduction: 

The concept of D-metric spaces was initiated by B C Dhage. The study was further enhanced by B E 

Rhoades, B C Dhage, A M Pathan. 

Definition1.1: A non-empty set X together with a function )0[  XXD:X  is called a D-metric 

space, denoted DX  if D satisfies  

i)   ce)(coincidenzyxifonlyandifz,y,xD  0  

ii)      )(,,,, symmetryzyxofnpermutatioaispwherezyxpDz,y,xD   

iii) 

        )(,,,,,,,,, inequalityltetrahedraXazyxforzyaDzaxDayxDz,y,xD   

The non-negative real function D is called a D-metric on X . A  D-metric is called generalized metric on X  

and the pair DX  is called Generalized metric space.  

      Generally the usual ordinary metric is called the distance function. D-metric is called diameter function of 

the points of X . 

      The common fixed point theorems for multivalued mappings in metric spaces have been obtained by Alina 

Sintamarian[1] which improve and generalize a result given by A. Latif and I. Beg in [2]. Here we make use of 

the following theorem to obtain common fixed point theorems of multivalued operators in generalized metric 

spaces. 

Theorem 2.1 Let DX  be a metric space and  XPXTS :,  be two multivalued operators. We 

suppose that at least one of the following condition is satisfied: 

(i) there exists   RR: a function with the property that   00  and such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have 

                        yxduud yx ,,   

ii) there exists 1,.....,, 43521   aawithRaaa  such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have 

           xyyxyx uydauxdauydauxdayxdauud ,,,,,, 54321   

iii) there exists 1,   awithRa such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have  

           ]},,[
2

1,,,,,,max{, xyyxyx uyduxduyduxdyxdauud   
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iv) there exists   RR5: a function with the property that   0,0,,,0,0  tallforttt and such 

that for each    yTuexiststhereXyallforandxSuanyXx yx  ,,   so that we have  

           ),,,,,,,,,(, xyyxyx uyduxduyduxdyxduud    

Then  TS FF  . 

Definition 1.2 Let X be a non empty set. By  XP  we shall understand the set of all non empty subsets of X

. A correspondence  XPXT :  is called a multivalued mapping on X . 

Definition 1.3 A fixed point of multivalued mapping  XPXT :  is a point Xx  such that  xTx
. 

   We denote by TF  the set of the fixed points of T . 

Let NnnT }{  be a sequence of multivalued operators with nonempty values that is 

  NnforXPXTn : . 

We denote by  TComFP  the set of the common fixed points of the multivalued operators 

NnforTn ,   

That is     
nT

Nn
n FNnallforxTxXxTComFP



 ,  

Main Result 

Theorem 2.2 Let DX be a generalized metric space and  XPXTS :,  be two multivalued 

mappings. We suppose that at least one of the following condition is satisfied. 

(i) there exists   RR: a function with the property that   00  and such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have 

                        yyxDuuuD yyx ,,,,   

ii) there exists 1,.....,, 43521   aawithRaaa  such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have 

           xxyyyyxxyyx uuyDauuxDauuyDauuxDayyxDauuuD ,,,,,,,,,,, 54321   

iii) there exists 1,   awithRa such that for each 

   yTuexiststhereXyallforandxSuanyXx yx  ,,  so that we have  

           ]},,,,[
2

1,,,,,,,,,max{,, xxyyyyxxyyx uuyDuuxDuuyDuuxDyyxDauuuD   

iv) there exists   RR5: a function with the property that   0,0,,,0,0  tallforttt and such 

that for each    yTuexiststhereXyallforandxSuanyXx yx  ,,   so that we have  

           ),,,,,,,,,,,,,,(,, xxyyyyxxyyx uuyDuuxDuuyDuuxDyyxDuuuD    

Then TS FF  . 

Proof: We assume that condition (i) is satisfied 

       Let  *** xSxThenFx S   and it follows that  

there exists  *xTu  such that  

       00*,*,*,,*   xxxDuuxD  

This implies that ux *   

Therefore,  ** xTx   and hence TS FF 
 

Now suppose that the condition (ii) is satisfied. 

Let   so   and there exists       such that  
SFx *  ** xSx   *xTu
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           

   uuxDaa

xxxDauuxDauuxDaxxxDaxxxDauuxD

,,*

*,*,*,,*,,**,*,**,*,*,,*

43

54321




 

This implies ux *  

Therefore   TFxisthatxTx  ***  

For the case when condition (iii) is fulfilled, the demonstration is made similarly with the proof from the second 

case. 

Finally, we assume that the condition (iv) is verified. 

Let  ** xTuexiststherethenFx S    such that  

            *,*,*,,,*,,,*,*,*,*,*,*,*,,* xxxDuuxDuuxDxxxDxxxDuuxD   

Introducing the notation  uuxDt ,,*   we obtain 

                                   ottt ,,,0,0  

If we suppose that 0t , then we reach the condition   tottt  ,,,0,0  

Thus 0t which means that *xu   . It follows that  ** xTx 
 and so TS FF  . This completes the 

proof of the theorem. 
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