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. Introduction
In [1], to give a unified approach for contraction mappings D. Delbosco’s considered the set F of all

continuous function g: [0, +)3 — [0, +0) satisfying the following conditions:

(g-1) g(1,1,1) =h<1,

(0-2) :Ifu,v € [0, +0) are such that

u < g(u,v,v)oru < g(v,u,v) oru < g(v,v,u)

thenu < hv.

And proved the following.

Theorem: 1.1 (see [1]) Let(X, d) be a complete metric space. If S and T are two mappings from X into itself,
satisfying the following conditions:

(1.1) d(Sx, Ty) < g(d(x,y),d(x,Sx),d(y, Ty))

for all x,y € X. where, g € F. Then S and T have a unique common fixed point in X.

Some authors proved many kinds of fixed point theorems for contractive type mappings by using Delbosco’s
set. (see [2-4]).The basic topological properties of ordered sets were discussed by Wolk [5] and Manjardet [6].
The existence of fixed point in partially ordered metric spaces was considered by Ran and Reurings [7]. The
notion of G-metric space was introduced by Mustafa and Sims [8] as a generalization of the notion of metric
spaces. Mustafa et al. studied many fixed point results in G-metric space [9-13].

I1.  Basic Concepts

In this section, we present the necessary definitions and theorems in G-metric spaces.
Throughout this paper, we will adopt the following notations: N is the set of all natural numbers, R* is the set of
all non-negative real numbers. Consistent with Mustafa and Sims [8], the following definitions and results will
be needed in the sequel.
Definition 2.1 (see [8])let X is a nonempty set and G: X x X X X - R*be a function satisfying the following
properties:

[Gl] G&.y,z)=0ifx=y=2z

[G2] 0 < G(x,x%,y), forall x,y € Xwithx # y.

[G3] G(x,xy) < G(x,y,z),forall x,y,z € X with z # y.

[G4] Gx,y,z) =Gx2zYy) =Gy, zX) = ... Symmetry in all three variables.

[G5] G(x,v,2) < G(x,a,a)+ G(a,y,z)forall x,y,z a € X (Rectangle inequality)
Then the function G is called a generalized metric or more specifically a G-metric on X and pair (X, G) is called
a G-metric space.
Definition 2.2(see [8])Let (X,G) be a G-metric space, and let {x,} be a sequence of points of X, a point x € X is
said to be the limit of the sequence {x,}, if limy, 1o G(Xp, Xm, X) = 0, and we say that the sequence {x,} is
G-convergent to x.Thus x,, = x in a G-metric space (X,G) if for any € > 0, there exists k € N such that
G(X,Xp, X)) < eforallm,n > k.
Proposition: 2.1(see [8]) Let(X, G) be a G-metric space. Then the following are equivalent:
(1). {xn}is G-convergent to;
(2). G(xp,Xp,x) = 0asn - o;
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(3). G(xp,,%x,x) = 0asn — oo;

(4). G(Xp,Xm,x) = 0 asn, m — oo,

Definition: 2.3 (see [8]) Let (X, G) be a G-metric space, a sequence {x,} is called G-Cauchy if fore > 0, there
isk € N such that G(x,, X, X)) < € foralln, m,1 > k, that is G(xp,, X, X)) = 0asn, m,1 - 4.

Proposition: 2.2(see [8]) Let(X, G) be a G-metric space. Then the following are equivalent:

(1) The sequence {x,} is G-Cauchy;

(2) For everye > 0, there isk € N such that G(x,,, X, Xm) < € foralln,m > k.

Definition: 2.4(see [8])Let (X,G) and (X, G")be G-metric spaces, and letT: (X, G) — (X', G") be a function. Then
T is said to be G-continuous at a point a € X if and only if for everye > 0, there isd > 0 such that x,y € X and
G(a,x,y) <& impliesG'(T(a), T(x), T(y)) <e. A function T is G-continuous at X if and only if it is G-
continuous at all a € X.

Proposition: 2.3(see [8])Let (X, G) and (X, G") are G-metric spaces. Then T:X — X' is G-continious at x € X if
and only if it is G-sequentially continuous at x; that is, whenever (x,) is G-convergent to X, (T(xn)) is G-
convergent to T(x).

Proposition: 2.4(see [8]) let (X, G) be a G-metric space. Then the function G(x,y, z) is jointly continuous in all
three of its variable.

Definition: 2.5(see [8]) A G-metric space (X, G) is called G-complete if every G-Cauchy sequence in (X, G) is
G-convergent in (X, G).

Definition: 2.6(see [8]) A G-metric space on X is said to be symmetric if G(x,y,y) = G(y, x,x) for all x,y € X.
Definition: 2.7Let (X, <) be a partially ordered set and T : X — X be say that non-decreasing mapping if
forx,y € X, x<y=Tx < Ty.

The notion of weakly increasing mappings was introduced in by Altun and Simsek [14].

Definition 2.8(see [14]) Let(X, <) be a partially ordered set. Two mappings T,S: - X are said to be weakly
increasing if Tx < STx and Sx < TSx for allx € X.Two weakly increasing mappings need not be non-decreasing.
Example: 2.1(see [14]) LetX = R*, endowed with the usual ordering. Let T, S: —» X defined by

X, 0<x<1,
'h_{u 1< x < 4o,
&z{&. 0<x<1,
0, 1<x<+4wx.
Then T and S are weakly increasing mappings. Note that T and S are not non-decreasing.

I11.  Main Results
We will prove the following result:
Theorem: 3.1Let(X, <) be a partially ordered set and suppose that there exists G-metric in X such that (X, G) is
G-complete. Let T,S:X — X be two weakly increasing mappings with respect to <, satisfying the following
conditions:
(3.1) G(Tx,Sx,Sx) < g(G(x, y,v), G(x, Tx, Tx), G(y, Sy, Sy))
(3.2) G(Sx, Ty, Ty) < g(G(x, y,y), G(x, Sx, Sx), G(y, Ty, Ty))
for all comparative x,y € X. where, g € F . If T or S is G-continuous, then T and S have a common fixed point u
in X.
Proof: Let x, be an arbitrary point in X. choose x; € X such that x;, = Tx,. Again choose x, € X such that
Sx, = x,. Also choose x5 € X such that x; = Tx,. Continuing this fashion, we can construct a sequence in {x,}
in X such that x,,,; = TX,,,¥Vn € NU{0}and X,,,., = SX;n41,¥n € NU{0}. Since T and S are weakly
increasing with respect to <, we get:
(3.3) X, = Txoy < S(Txq) = Sx; = x5 < T(Sx;) = Tx, = X3
< S(Tx,) =SX3 =X < *ot e e e
Form (3.1), we have
G(Xzn+1 X2n+2  X2n42) = G(TXzn, SX2n41, SXzn+1)
<g (G(XZn: Xan+1> X2n+1), G(Xan, TXop, TXZn)')
- G(X2n+1) SX2n4+1, SX2n+1)
_ (G(XZn: Xan+1 X2n+1)» G(Xan) Xon41) X2n+1):>
G(X2n4+1) X2n+2 X2n+2)

Thus, by (g-2), we have

(3.4) G(X2n+1, X2n+2, X2n+2) < hG(Xan, X2n41, X2n41)
Similarly, by (3.2), we have

G(X2n) X2n+1: X2n41) = G(SXan-1, TXzp, TX2p)
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<g <G(X2n—1'X2n'X2n)'G(XZn—DSXZn—l'SXZn—l)'>
-t G(XZn: TXZn' TXZn)
—a <G(X2n—1'X2n'X2n)'G(XZn—DXZn' XZn)')

] G(X2n) X2n+1) X2n+1)
Thus, from (g-2), we obtain:

(3.5) G(X2n, X2n4 1) X2n+1) < hG(Xzn_1, X2n, X2n)
Therefore, by (1.4) and (1.5),
(36) G(Xnvxn+lixn+1) < hG(Xn—lixn! Xn)vn €N.

If xo = x;, We get G(Xp, Xp4+1,Xns+1) = 0 for each n € N. Hence x,, = x, for each n € N. Therefore {x,} is G-
Cauchy sequence in X. So without loss of generality, we assume that x, # x;. Let m,n € Nwithm > n. By
axiom[G5] of the definition of G-metric space, we get:

(37) G(anxmixm) < G(Xnv Xn+1vXn+1) + G(Xn+1!xn+2!xn+2) toeet G(Xm—ltxm: Xm)
Using (3.6), we have
(3.8) G(Xp, Xy Xm) < [h® + h2+ 4 o L +h™ 1 G(xg, X1, X1)

=< 1h__h G(xo,X1,X1)
On making limit m,n — oo in (3.8), we get
(3.9) limp, e GXpy Xy Xm) =0
This implies that {x,} is G-Cauchy sequence in (X, G) and so, since (X, G) is G-complete; it converges to a point
u in X. Also the sub-sequences (X;n+1) = (TX5y) and (Xan42) = (SX2n41) CONvVerge to u.
Further, the G-continuity of T implies
(3.10) Tu = T(limp_ e Xon) = limy_,e TXyp

= lirnn—wo Xon+1 = U
And this proves that u is a fixed point of T. Now, we claim thatTu = u. Since u < u, by inequality (3.1), we
have
G(u, Su, Su) = G(Tu, Su, Su)

<g (G(u, u, u), G(u, Tu, Tu), G(u, Su, Su))

=g,(0,0,G(u, Su, Su))

= 0 ,by property (g-2)
That is, Su = u, which means that the point u € X is a common fixed point of T and S. If S is G-continuous. By
similar argument as above we shows that S and T have a common fixed point. This finishes the proof.

In what fallows, we prove that Theorem 3.1 is still valid for T and S, not necessarily continuous, assuming the
following hypothesis in X:

(3.11) If {x,} is a non-decreasing sequence in X such that x, — x, thenx = sup{x,}, forall n € N.

Theorem: 3.2 Let(X, <) be a partially ordered set and suppose that there exists G-metric in X such that (X, G) is
G-complete. Let T and S be two weakly increasing mappings with respect to <, satisfying the conditions (3.1)
and (3.2). Assume that X satisfies (3.11). Then T and S have a common fixed point u in X.
Proof: Following the proof of Theorem 1, we only have to check Tu = Su = u.
As {x,} is an increasing sequence in X andx, — u. Thus (Xp), X2n+1), (TX2n) and (Sx,,.1) CONverge to u.
since X satisfies property (3.11), we get thatu = Sup{x,}, particularly, x,, < u for all n € N. Thus x,, and u are
comparative. By (3.1), we have
(3.12) G(TxXzn, SU, Su) < g(G(Xzn, U, 1), G(Xzn, TXzn, TX2n), G(u, Su, Su))
On making limit n - 40 in (3.12) and using the fact that g and Gare continuous, by property (g-2), we obtain:

G(u, Su, Su) < g(0,0,G(u, Su, Su))

= hG(u, Sy, Su)

which means that G(u, Su, Su) = 0 that is,u = Su.
By similar argument, we may show thatu = fu. This finishes the proof.
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