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Abstract:We study the steady state Magnetohydrodynamic (MHD) equations in the whole space  

Following the work of C. Bjorland and M. Schonbek [4] onNavier -Stokes equations in the whole 

space, we prove the existence of atleast one  solution with finite Dirichlet  Integral 

 to steady state Magnetohydrodynamic equations  in the whole space. Further, 

we show that these solutions are unique among all solutions with finite energy and finite 

DirichletIntegral . 

 

I. Introduction 

Magnetohydrodynamics (MHD) is the study of flows of fluids which are electrically 

conducting and move in a magnetic field. The simplest example of an electrically conducting fluid is a 

liquid metal like mercury or liquid sodium. MHD treats, in particular, conducting fluids either in 

liquid form or gaseous form.The equations describing the motion of a viscous incompressible 

conducting fluid moving in a magnetic field are derived by coupling Navier-Stokes equations with 

Maxwell’s equations together with expression for the Lorentz force. The domain Ω in which the fluid 

is moving is either a bounded subset of  or the whole space . In this paper we restrict our 

considerations to a domain Ω which is the whole space .During past four or five decades, there 

have been an extensive study of qualitativeproperties such as existence, uniqueness, regularity and 

stability of solutions of theMHD equations. This is evident from the work of Duvaut and Lions [1], E. 

SanchezPalencia [2], Sermange and Temam [3] and other researchers working in the field. 

Themethods from nonlinear functional analysis such as Galerkin approximation, fixed pointtheorems, 

monotone and coercive operators, semigroup theory etc have been applied toestablish many a 

qualitative properties for compressible as well as incompressible MHDflows. The function spaces 

used are either Holder spaces or Sobolev spaces which are theappropriate function spaces for using 

these methods and the theory of elliptic operators. 

In spite of these works, there are very few qualitative results available in the case where the 

domain is the full space. In the case when domain is a bounded subset of R
3
, it is easy to obtain 

qualitative results by using Poincare type inequality. But for unbounded domain, one has to use other 

techniques as were developed by C. Bjorland and M. Schonbek [4]. As for MHD flows for 

incompressible conducting fluids, there are other works where regularity results for MHD flows have 

been proved ( see references [5-7] ). However, as in the case of Navier-Stokes equations for 

incompressible fluids, the proof of global regularity remains illusive in this case also. In the present 

paper, we show that the techniques used in [4] can be extended to prove similar results for steady state 

Magnetohydrodynamic (MHD) flows. 

Thus, we consider viscous incompressible Magnetohydrodynamic (MHD) flow governed by the 

following equations: 
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                                   ......(1.1) 

 

 

 

describing the motion of a conducting fluid in an electromagnetic field, where 

𝑢 = is  the velocity vector , b=b(t,x) is the magnetic field vector,  𝜈is the 

kinematic co-efficient of viscosity,𝜆 is the co-efficient of magnetic diffusivity, 

p=p(t,x) is the pressure,  f=f (t,x) is the external force, is the initial condition ,  Ω is  

a domain which is a bounded subset of  and ∂Ω denotes the boundary of  Ω. In the present paper 

,we are interested in steady state solution for the MHD equations. For this we consider the following 

system of partial differential equations : 

…(1.2A)

…(1.2B)

                                                    ... (1.2) 

 

Such partial differential equations are satisfied by those solutions for 

which which means the solution is constant with respect to time. Thus, the 

solution(𝑈, 𝐵)is the steady state solution of the MHD equations satisfying 

respectively . 

As we are working with  functions  with compact support we can say that (𝑈, 𝐵) tends to  zero as   𝑥  
becomes large. 

We denote by    the space of square  integrable functions and all integrals in this paper are 

taken over the whole space  unless otherwise stated ,  denotes the space of smooth  functions 

with compact support .Moreover we have: 

 

 

 

 

 

 

 

 Furthermore , we denote by C all general constants, and C(𝛼) represents the  dependence of 

constant C on a some parameter  𝛼 . We use  𝜉 to work in a Fourier space. 
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The  main aim of this paper is to use the techniques of [4] to construct solutions for the steady state 

MHD equations in the whole space with finite energy by imposing certain restrictions on f. Thus, in 

Section II, we give preliminary concepts and develop the machinery  which will be used to prove our 

main theorem. We also discuss about bounds for stationary solutions of MHD.In Section III, 

we prove themain existence theorem and decay of solutions. Finally, in Section IV we give 

concluding remarks commenting on probable future work. 

We now state our main theorem. For this ,as discussed above,   is the completion of the 

smooth divergence free functions of  compact support. Moreover the condition  𝑓 ∈ 𝑋implies the 

classical assumptions  i.e.it is a finite Dirichlet Integral. This is used in 

the statement of our Theorem. 

 

Theorem 1.  Let M > 0 and f ∈ X  satisfies the following assumption. 

(A) There exists a ρ
0
 such that f    = 0 for almost every || < ρ

0
    

 

Then there exists a constant C(ρ
0
,,M) so that if  f X    C(ρ

0
,,M) the following hold : 

i) The PDE (1.2) has a weak solution (U, B) ∈ Hσ
1  ×  Hσ

1 . It is a weak solution in the sense that for 

any divergence  free functions of compact support  ,ψ  

<U U,> − <B U,> +  <U,  > = <f, > 

<U B, ψ > − <B U, ψ > +  < B,  ψ > = 0 

(ii) This solution  satisfies  (U, B) 2    M and 

     (U,B) 2  
−1

  f X 

(iii) This solution is unique among all solutions which have a finite norm & satisfies  

  (U,B) 2   
−1

  f X 

Remark : The behavior of the constant C(ρ
0
,, M) allows large f when the Magnetic Reynold 

Number is small. In this work, we assume that the Fourier transform of f is zero in some 

neighbourhood of the origin. This corresponds to exponential decay for the heat flow starting with 

initial data f. 

 

II.Preliminaries 

For Navier-Stokes equations, existence of weak solutions in a steady state case is well known, 

see for example  [8-13]. Approximations with the Galerkin method & a priori bounds along with the 

Banach-Alaoglu theorem  helps us to construct weak solutions by finding a subsequence of 

approximations converging weakly to a possible solution . Then we use stronger compactness 

property to find the limit which is a solution of steady state equation. 

For this approach we use a priori bound given by : 

  (∇U, ∇B) 2
2  

−2
  f X

2                ....(2.1) 

 This is the assumptions that (U,B) has a finite Dirichlet Integral but we derive it from our assumption  

f  ∈ X using the estimate 

   (f, U)      f X   ∇U, ∇B  2 

  The bound (2.1) is proved by multiplying formally (1.2A) by U & (1.2B) by B respectively as 

follows : 

(UU – BB + P −  U – f, U) = 0 

& (U B – B  U - B, B) = 0 

This implies after integration by parts 

<UU, U> – < BB, U> + | U|
2
 – <f,U> = 0         ... (2.2A)  
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& <UB, B> – < BU, B> + | B|
2
 = 0         ...(2.2B)  

 By using specific form of non-linearity <w U,U> = 0 when  w =0 & using <B B,U> = − <B 

U,B> and then adding  (3.4A) & (3.4B) we get  

  |U|
2 
 +  |B|

2
 = < f, U >  ...(2.3) 

Without loss of generality we assume  <  and henceforth we work with this condition in this 

chapter unless otherwise stated. 

 Equation (2.3) becomes  

  |U|
2
 +  |B|

2
 = < f ,U >    ... (2.4) 

On integrating (3.6) and using Poincare inequality alongwith definition of product norm, we get: 

    ∇U, ∇B  2
2  C  f X    ∇U, ∇B  2  

So, finally we get:  

 || ∇U, ∇B ||2
  C 

−2
  f X

2       ... (2.5) 

We shall use this bound throughout our discussion. Now fix f and (U,B) as a solution to (1.2A)and 

(1.2B). ((U,B) does not depend on time). We would like to find conditions on f which guarantee 

  U, B  2 <. For this, we establish “fast decay” of solution to the system: 

st + U ∙ ∇s − B ∙ ∇w + ∇p = s ... (2.6 A)  

wt + Uw − Bs = w  ... (2.6 B)         …(2.6) 

s(0) = f, w(0) = 0,  s = 0,  w = 0 

Normally  if  f(s,w) is a solution of (2.6) and then 

 U =  s t dt
∞

0
  

& B =  w t dt solves
∞

0
  

U   U   B   B  +  p =   U   + f      ... (2.7A)      

U   B  – B   U  =    B       ...(2.7B)                   ...(2.7) 

 U  = 0,   B  = 0 

We  have fixed (U,B) earlier  &  it is also a solution for this PDE since it satisfies (1.2). As this PDE 

is linear &  U = 0,   B = 0 ,solution is unique and thus we conclude that U  = U, &  B  = B 

Using Minkowsky inequality for integrals, L2 decay of s is related to the L2 norm of (U,B) as follows 

 U 2 =   s dt
∞

0
 

2
    s(t) 2dt

∞

0
 

 B 2 =   w dt
∞

0
 

2
    w(t) 2dt

∞

0
 

Thus, if   s, w (t) 2  c(1 + t)
−𝜅 with 𝜅 > 1, then  we can expect 
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 (U,B)  L2 × L2.  

Using a standard Fourier Splitting argument we can only get 

  U, B  2  c(1 + t) 
-3/4

 

To resolve this problem we will estimate the difference: 

 ℓ = s – Φ where Φ = eνΔtf   

     & m = w                                            …(2.8) 

Here  Φ  is the solution to the heat equation with initial data f. The function (ℓ, m) satisfies a parabolic 

equation with  zero initial data & a forcing term which can be controlled by restricting f .  

Thus using (2.8), we get our new set of equations as: 

 ℓt + U ∙ ∇ℓ + U ∙ ∇Φ − B ∙ ∇m + ∇P = νΔℓ  

mt + U ∙ ∇m − B ∙ ∇ℓ − B ∙ ∇Φ = Δm  

 ℓt + U ∙ ∇ℓ − B ∙ ∇m + ∇P = νΔℓ − U∇Φ ...(2.9A) 

    mt + U ∙ ∇m − B ∙ ∇ℓ = Δm + B ∙ ∇Φ   ...(2.9B)              …(2.9)   

∇ ∙ ℓ = 0,          ∇ ∙ m = 0,            

(ℓ, m) (0, 0)  = 0 

Using the argument as in [4] ,we now make the following assumption on f . 

Assumption 1:   f  X & there exists a ρ
0  > 0 such that f (ξ) = 0 for every  ξ  < ρ

0
 

We now prove the following  

Lemma 1  : If f satisfies Assumption 3.2 & Φ = eΔt ,  f,  

then,    2
2 ≤ e−2ρo t   f  

2

2
    ...(2.10) 

Proof:  This inequality can be easily proved by using the bound  

             Φ  =   e− ξ 2tf    

 

  Φ    e−2ρo t   f   

  and calculating the L
2
  norm by applying  Plancherel theorem 

. 

III. Existence theorems and decay of solutions 

Throughout this section we will assume f satisfies assumption 1 & thus  = eΔ tf  satisfies (2.10). We 

give attention to the  study of solutions for the two auxiliary PDEs. 

 

U
i
 U

i+1
 − B

i
 B

i+1
 + p = U

i+1
+f   ...(3.1A) 

 

U
i
 B

i+1
 − B

i
  U

i+1
 = B

i+1
   ...(3.1B)  …(3.1) 

U
i+1

 = 0,  B
i+1

 = 0,  
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And 

 

 ℓt
i+1 + Ui ∙ ∇ℓi+1 − Bi ∙ ∇mi+1 + p =   ℓi+1 −U

i
  ...(3.2A) 

 

 mt
i+1 + Ui ∙ ∇mi+1 − Bi ∙ ∇ℓi+1 =    mi+1 +B

i
   ...(3.2B)               …(3.2)        

  ∇ ∙ ℓi+1 = 0,  ∇ ∙ mi+1 = 0, 

 (ℓi+1, mi+1) (0, 0)  = 0 

 

To deal with these partial differential equations, we take the function (U
i
,B

i
) Hσ

1 x Hσ
1 fixed before 

hand. Then we use these PDE’s recursively to find approximate solution for (1.2) and (2.9) 

respectively. In what follows, we recall existence theorems for these equations and estimate the decay 

rate for (ℓ
i+1

, m
i+1

) furthermore, we make precise the meaning of
  

U
i
=  si t dt 

∞

0
 and B

i
=  wi t dt 

∞

0
 
 

then combine it with decay calculations to find uniform bounds on 

(U
i
, B

i
). Finally, we show that it is a  

Cauchy sequence in H 
σ
1 × H 

σ
1 whose limit is a solution of (1.2)

 
We now state and prove the following existence theorems:  

 

Theorem 2.: Let (U
i
, B

i
) Hσ

1 x Hσ
1 and f  X and 𝜈 < 𝜆 . Then there exists a unique weak 

solution Ui+1, Bi+1  to the PDE (3.1) in the sense that for any ,ψ  V 

<Ui Ui+1, >− <Bi Bi+1, > +  < Ui+1,> = <f, >             ...(3.3A)                                                                                          

<Ui Bi+1, ψ >− <Bi Ui+1, ψ > +  < Bi+1, ψ >= 0             ...(3.3B)               …(3.3) 

Moreover, this solution satisfies  

   ∇Ui+1, ∇Bi+1  
2

2
  

−2
  f x

2                     ... (3.4)  

Remark: The term  ∇p does not appear in (3.3A)       because ∇ = 0.  

Proof :The procedure of the proof is by using Galerkin approximations and is well-known in the 

literature, see for example references [1-3]. Also, the proof can be generalized to MHD case by 

following the proof for Navier-Stokes equations as available in the literature ( see for example the 

references [8-13]. 

 

Theorem 3.: : Let (U
i
, B

i
) Hσ

1 x Hσ
1 satisfy  

   ∇Ui , ∇Bi  
2

2
  

−2
  f x

2      ... (3.5) 

& f satisfy the Assumption 1 with  = e
t

 f also we assume 𝜈 < 𝜆   Then there exists a unique weak 

solution 

 ℓi+1 , mi+1   (L

 (R

+
, Lσ

2 ) ∩ L
2
 (R

+
, H 

σ
1) )× ( L


 (R

+
, Lσ

2 ) ∩ L
2
 (R

+
, H 

σ
1) ) 

   to the PDE (3.2) in the sense that for any , ψ  C
1
 (R

+
, V) 
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<ℓt
i+1,> + <U

i
  ℓ i+1

,> − <B
i
 m

i+1
,>   = − <ℓi+1,> − <U

i
 , >  ..(3.6A) 

<mt
i+1, ψ> + <U

i
 m

i+1
, ψ > − <B

i
 ℓi+1, ψ >   =−<m

i+1
,  ψ > + <B

i
 , ψ >…(3.6B) 

ℓi+1 = 0,  m
i+1 

= 0                                                                 

(ℓi+1, mi+1) (0, 0) = (0,0)     

 Moreover this solution satisfies   

sup
t

 (ℓ
i+1, mi+1)(t) 

2

2
  +    (ℓ

i+1,mi+1)(s) 
2

2∞

0
 ds  Cρo

-1/2 
 

−4
   f x

4   …(3.7) 

Proof:-The partial differential equations here are closely related to MHD equations. As mentioned in 

the proof of previous theorem, the procedure is to construct Galerkinapproximations which satisfies a 

uniform estimate similar to (3.7) and then use compactness argument to pass through the limit. We 

now give a formal proof of (3.7) which can be used as an a priori estimate in this approach. 

Multiplying (2.9A) by ℓ
 i+1 

& (2.9B) by m
i+1 

, integrating by parts & adding and then using the bilinear 

relations, we get:- 

1

2

d

dt
 ℓi+1 

2

2
 +   ∇ℓi+1 

2
+ 

1

2

d

dt
 mi+1 

2

2
+   ∇mi+1 

2
  

= <Ui ∙   ℓi+1, > + <Bi ∙   mi+1, > 

  Ui 
6
   ∇ℓi+1 

2
   Φ 3 +  Bi 

6
   ∇mi+1 

2
  Φ 3 

  
𝑐


 Ui 

6

2
   Φ 3

2  +


2
 ℓi+1 

2

2
+

𝑐


 Bi 

6

2
   Φ 3

2 +


2
 mi+1 

2

2

                …(3.8) 

 

1

2

d

dt
[ ℓi+1 

2

2
 +   mi+1 

2

2
]+  ∇ℓi+1 

2
   ∇mi+1 

2
 

 
2𝑐


 (U

i, Bi) 
6

2
   Φ 3

2  +


2
 ℓi+1 

2

2
+



2
 mi+1 

2

2

                        ...(3.9)  

Now, using the assumption ν <  and the fact that 

 Ui 
2
    Ui, Bi  

2
 , 

 Bi 
2
    Ui, Bi  

2
   

 And using the product norm  (ℓi+1, mi+1) 
2

2
=  ℓi+1 

2

2

+   mi+1 
2

2
  , our equation (3.9) becomes 

1

2

d

dt
 (ℓ

i+1, mi+1) 
2

2

+ 


2
  (ℓ

i+1,mi+1) 
2

2
 

   
2𝑐


 (Ui, Bi) 

6

2

   3
2  


𝑐


  (Ui, Bi) 

6

2
   3

2              ...(3.10) 

Here, we have used Holder’s inequality and Cauchy’s Inequality. Now using the Gagliardo-Nirenberg 

Inequality & the assumed bound on (U
i,Bi) 

2

2
  we get:  

 

d

dt
 (ℓ

i+1, mi+1) 
2

2

+   (ℓ
i+1,mi+1) 

2

2
≤

c

ν3
 f x

2   3
2   ...(3.11)  

Using Lemma 3.3, we get  

   Φ(s) 2
2t

0
ds ≤  f X

2  e−2νρ0 st

0
ds ≤

 f 2
x

2νρ0

 

 Together with the Gagliardo-Nirenberg Inequality & the heat property    
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2ν   Φ(s) 2
2

0
ds ≤  f X

2   ,we get 

   Φ(s) 3
2

0
ds ≤   Φ(s) 2  ∇Φ(s) 2 ds

t

0
  

 ≤    Φ(s) 2
2t

0
ds 

1
2
   Φ(s) 2

2t

0
ds 

1

2
 

 Cρ
0

− 
1

2ν
-1 f X

2          ...(3.12) 

Now integrating (3.11) in time & then applying (3.12),we get (3.7).This completes the proof. 

 

Remarks 3.1: In the theorem above the assumption  Ui, Bi  ∈ Hσ
1 × Hσ

1  is enough to 

ensure UiUi+1 ∈ (H 
σ

1
)ʹ , BiBi+1 ∈ (H 

σ

1
)ʹ and 

Uiℓi+1 ∈ (H 
σ

1
)ʹ ,Bimi+1 ∈ (H 

σ

1
)ʹ a.e. 

 That is,|<U
i
 U

 i+1
, >| C   2

2 

 

|<B
i
 B

 i+1
, >| C   2

2 

 

|<U
i
  ℓ i+1

, ψ >| C  ψ 2
2  

 

and|<B
i
 m

 i+1
, ψ >| C  ψ 2

2 

 

Thus multiplying the PDEs by Ui+1, Bi+1 & ℓi+1, mi+1 respectively & integrating in space is justified. 

To see this, we choose a test function approximating either   Ui+1, Bi+1  & pass the limit through the 

weak formulation (3.6). We shall use this technique in the following work. 

 

 Decay of  : Here, by using the bootstrapping method & Fourier splitting method we calculate 

the energy decay for .Mohgaonkar and Saraykar [14 ] have derived  decay estimates for 

incompressible MHD flows. Our aim here is to find  faster decay rates.For this we apply the Fourier 

splitting method and use the bound (3.7) to find a preliminary decay rate . This is then used to deduce 

a faster decay rate. We have to repeat this procedure until the lower rate is not affected by the 

recursion. Thus, we begin with an estimate for  ℓ    and  m   . 

 

Lemma 2 : Let  ℓi+1, mi+1  be the solution of (3.2) given by Theorem 3 with  Ui, Bi  and f satisfying 

assumptions of the same theorem. Then,  

ℓi+1 
  C ξ  (Ui) 

2
 (  ℓi+1 

2

t

o
 (s) ds + −1ρ

o
−1  f x)   …(3.13A) 

 

mi+1   C ζ  Bi 
2
 (  mi+1 

2

t

o
 (s) ds + −1ρ

o
−1  f x)            ...(3.13B) 

 

Proof :- Taking the Fourier Transform of differential equations in (3.2) and noting that the initial data 

is zero, we  have  

 ℓi+1 
 = −  e−ν ξ2 (t−s)t

o
 ξ ∙ Ui ℓi+1 + ξp +  ξ ∙ Bi mi+1 +  ξ ∙ UiΦ

   (s) ds    ...(3.14A) 



Existence Of Steady State Solutions With Finite Energy For The Magnetohydrodynamic Equations In  

                                                                                        www.iosrjournals.org                                      24 | P a g e  

 

 mi+1  = −  e− ζ2 (t−s)t

o
 ζ ∙ Ui mi+1 +  ζ ∙ Bi ℓi+1 +  ζ ∙ BiΦ

   (s) ds    ...(3.1B) 

 Now using Young’s Inequality along with the Plancherel Theorem,we get  

    Uiℓ
i+1 

   +   Bi mi+1    +   Ui
     

                              (U
i, Bi) 

2
   ℓi+1 

2
+    2+ ℓi+1 

2
   

    Uim
i+1 

   +   Bi ℓi+1    +   Bi
     

                              (U
i, Bi) 

2
   (mi+1 

2
+  ℓi+1 

2
+    2  

Now, taking the  divergence of (3.14A), and then the Fourier Transform ,we obtain  

|p |  C (    Uiℓ
i+1 

   +   Bi mi+1    +   Ui
   ) 

      Using above in equation (3.14A) we get 

ℓi+1 
  C ξ  (U

i, Bi) 
2
    ℓi+1 

2
+   mi+1 

2
+   2 

t

0
 (s) ds 

 

        C ξ  (U
i, Bi) 

2
 (  ℓi+1 

2

t

0
 + mi+1 

2
 (s) ds + −1ρ

0
−1  f x) 

And 

 mi+1   C ζ  (U
i, Bi) 

2
    mi+1 

2
+  ℓi+1 

2
+   2 

t

0
 (s) ds 

  C ζ  (U
i, Bi) 

2
 (  mi+1 

2
+

t

0
 ℓi+1 

2
 (s) ds + −1ρ

0
−1  f x) 

The last inequalities in the above estimates follow from   Lemma 1 

This completes the proof. 

We now state a Lemma which can be proved on similar basis as Lemma 3.5 in [4]. 

 

Lemma 3 : Let (ℓ
 i + 1

, m
i+1

) be the solution of (3.2) given by Theorem 3 with (U
i
, B

i
) & f satisfying 

the assumptions of the same theorem.  

Then, for any α, β ≥ 4, (ℓ
 i + 1

, m
i+1

) satisfies the differential inequality 

d

dt
 ((1 +  t)𝛾   (ℓ

i+1, mi+1) 
2

2
) 

≤ C(𝛾, ρ
0
, ν) (U

i, Bi) 2
2 (1 +  t)𝛾−

7

2 (  (ℓ
i+1, mi+1)(s) 

t

0 2)ds +  f X)
2
 +  C ν

-3 f X
2  Φ 3

2 (1 +  t)𝛾       

..(3.15)  

Where 𝛾 = min⁡( α, β)    

 

Proof : Multiply (3.2A) by l
i+1

& (3.2B) by m
i+1

 then integrate by parts & then apply the bilinear 

relation & the assumed bound (3.5) we get. 
1

2

d

dt
  ℓi+1 2

2  + ν  ∇ℓi+1 2
2  -  Bi. ∇mi+1, ℓi+1 = 

 Ui. ∇ℓi+1, ϕ    &  

1

2

d

dt
  mi+1 2

2 + λ ∇mi+1 2
2  -  Bi. ∇ℓi+1, mi+1 =  Bi. ∇mi+1, ϕ   

Applying same argument as in previous lemma  we get from (3.11) 
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1

2

d

dt
  ℓi+1 

2
 + ν  ∇ℓi+1 

2
  

≤
C

ν3
   f X

2   Φ 3
2 + 

ν

2
  ∇ℓi+1 

2

2
        ...(3.16A) 

1

2

d

dt
  mi+1 

2
  + ν  ∇mi+1 

2
  

≤
C

ν3
   f X

2   Φ 3
2 + 

ν

2
  ∇mi+1 

2

2
                                     ….(3.16B) 

Now we split the viscous term in Fourier space around the ball B(R) using the Plancherel Theorem   

– ν  ∇ℓi+1 
2

2
  ≤ – ν    

B R C  ℓi+1   2d 

 ≤ – νR
2
   

ℓ i+1 
 

B(R)C d   

≤ – νR
2  ℓi+1 

2

2
 +  νR

2
   ℓi+1  

B(R)
2
d   

Combining this with (3.16A) we get 

d

dt
 (ℓi+1) 

2

2
 + νR

2 ℓi+1 
2

2
   

≤  νR
2 
   ℓi+1  

B(R)
2 
d  +  C ν

3 
  f X

2   Φ 3
2 

Similarly our (3.16B) becomes 

d

dt
 (mi+1) 

2

2
 + νR

2 mi+1 
2

2
  ≤  νR

2 
   mi+1  

B(R)
2 
dζ  +  C ν

3 
  f X

2   Φ 3
2 

Then using (3.13), we bound 

  ℓi+1  
B(R)

2 
d  ≤ C Ui 2  

2 (  ℓi+1(s) 
t

0 2 ds+ ν
-1

ρ
0
−1 f X)(    

B(R)
2
d )   

≤ C  Ui 2  
2  (  ℓi+1 

t

0 2 ds +ν
-1 

ρ
0
−1 f X)R5 

Similarly, 

  mi+1  
B(R)

2 
d  ≤ C Bi 2  

2 (  mi+1(s) 
t

0 2 ds+ ν
-1

ρ
0
−1 f X)(   ζ 

B(R)
2
dζ )   

≤ C  Bi 2  
2  (  mi+1 

t

0 2 ds +ν
-1 

ρ
0
−1 f X) R5 

then 

d

dt
 (ℓi+1) 

2

2
 + νR

2 ℓi+1 
2

2
  ≤ C  νR

7 Ui 2  
2  

 
(1+ν

-1
ρ

0
−1)

2
(  ℓi+1) 

t

0
(s)ds+ f X)

2
 

 +  C ν
-3 f X

2   Φ 3
2   …(3.16C) 
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and
d

dt
  mi+1 

2

2
 + νR

2 mi+1 
2

2
   

≤ C  νR
7 Bi 2  

2  
 
(1+ν

-1
ρ

0
−1)

2
(  mi+1 

t

0
(s)ds +  f X)

2
 

 +  C ν
-3 f X

2   Φ 3
2 …(3.16D) 

Here we take R
2
 = 

m

ν
  (1+t)

-1
 then use (1+t)𝛼 as an integrating factor of (3.16C) and (1+t)𝛽 as an 

integrating factor of (3.16D) and subsequently adding them and using product we establish the 

lemma. 

Theorem 4 : Let (ℓ
 i+1

,m
i+1

) be the solution of (2.9) given by theorem 3 with (U
i
,B

i
) and f satisfying 

the assumptions of the same theorem.  Then   (ℓ
 i+1

,m
i+1

) satisfies the decay bound  

  ℓi+1, mi+1 (T) 
2

2
≤ C(μ, ρ

0
, ν) (1 +  (U

i, Bi) 2
2) 2(1+ f X

2 )  f X
2 (1+T)

 -5/2   
  ..(3.17) 

Where μ = max⁡(α, β)   

Proof : Combining the bound on  (ℓi+1) 2 given by (3.7) with (3.16) we write.  

d

dt
 ((1 +  t)α  ℓi+1  

2

2
) ≤ C (α, ρ

0
, ν)  (Ui) 2

2)  (1 +  t)α-7/2
 (t

2 f X
4  +  f X

2  )+ C (ν)  f 2
2  Φ 2

2 

(1 +  t)α 

≤ C (α, ρ
0
, ν) (1 +  (Ui) 2

2) (1+ f X
2 )  f X

2  (1 +  t)α-3/2
  + C (ν) f X

2   Φ 3
2 (1 +  t)α     

 

Similarly we have  

d

dt
 ((1 +  t)β  mi+1  

2

2
) ≤ C (β, ρ

0
, ν)  ( Bi) 2

2) (1 +  t)β -7/2
 (t

2 f X
4  +  f X

2  )+ C (ν)  f 2
2  Φ 2

2 

(1 +  t)β 

≤ C (β, ρ
0
, ν) (1 +   Bi 2

2) (1+ f X
2 )  f X

2 (1 +  t)β-3/2
  + C (ν) f X

2   Φ 3
2 (1 +  t)β 

The next step is to integrate in time. The first term on the RHS of above equations can be integrated 

directly and the second term is estimated similar to (3.12) in each above equations. Now, 

C (ν) f X
2     Φ 3

2T

0
 (1 +  t)α 

dt ≤ C (ν) f X
2     Φ(t) 2

T

0
 ∇Φ(t) 2(1 +  t)α 

dt 

≤ C (ν) f X
2 ( (1 +  t)α Φ(t) 2

2T

0
ds)

1/2
(  ∇Φ(t) 2

2)dt
T

0
 

Similarly we have, 

C (ν) f X
2     Φ 3

2T

0
 (1 +  t)β 

dt ≤ C (ν) f X
2 ( (1 +  t)β Φ(t) 2

2T

0
ds)

1/2
(  ∇Φ(t) 2

2)dt
T

0
 

This gives an initial decay bound.  

  ℓi+1 (T) 
2

2
≤ C (α , ρ

0
,ν)(1+  Ui 2

2 ) (1+ f X
2 ) f X

2  (1+T)
-1/2

 …(3.18A) 

    mi+1 (T) 
2

2
≤ C (β , ρ

0
, ν)(1+   Bi 2

2 ) (1+ f X
2 ) f X

2  (1+T)
-1/2

       …(3.18B)                                                                             

We now use (3.15) and (3.18) instead of (3.7) and integrate in time to obtain 
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  ℓi+1 (T) 
2

2
≤ C(α , ρ

0
, ν) (1 +   Ui  2

2) 2(1+ f X
2 ) f X

2 (1+T)
 -1 

  mi+1 (T) 
2

2
≤ C(β, ρ

0
, ν) (1 +   Bi  2

2) 2(1+ f X
2 ) f X

2 (1+T)
 -1 

Adding above inequalities and using product norm and then following the iteration procedure six 

times ,which gives the best decay rate, we get finally our results. 

We now proceed to derive a relation between (U
i
,B

i
) & (ℓ

 i
,m

i
) . 

Relation between (U
i
,B

i
) & (ℓ

 i
,m

i
) :  

We have U
i
=  si∞

o
(t)dt and B

i
 =  wi∞

o
(t)dt. We show that approximations of these integrals  are 

bounded uniformly in L
2
 & form Cauchy sequences whose limit will be a solution of (3.1). We then 

apply the decay results showed above to find a uniform bound in L
2
 for (U

i
,B

i
). For this we use Φ  =  

e∆tf.  We first prove the following Lemma. 

Lemma 4:  Let (ℓ
 i+1

,m
i+1

) be the solution of (2.9) given by Theorem 3 with (U
i
,B

i
) & f satisfying the 

assumption of the same theorem. Then the functions  

s
i+1

= ℓ
 i+1

+Φ & w
i+1

 = m
i+1

  

satisfy :  si+1∞

o
(t)dt ϵ Lσ

2 &  wi+1∞

o
(t)dt  ϵLσ

2  

Proof : For each fixed i, define the sequences  {Sn
i+1}n ∈ N ⊂ Lσ

2 &  {Wn
i+1}n ∈ N ⊂ Lσ

2  given by  

Sn
i+1=  si+1n

o
(t) dt and Wn

i+1=  wi+1n

o
(t) dt 

Since, si+1(t)ϵ Lσ
2, wi+1(t) ϵ Lσ

2  a.e. the sequences {S
n

i+1} & {W
n

i+1} are well defined. Using 

Minkowski’s inequality for integral with assumption 1 (through (2.10) & (3.17) the following bounds 

show how the sequences  {S
n

i+1} & {W
n

i+1} are bounded uniformally (for n) in Lσ
2 respectively.    

 Sn
i+1 

2
≤   si+1(t) 

2

n

0
dt and  Wn

i+1 
2

≤   wi+1(t) 
2

n

0
dt 

⇒  Sn
i+1 

2
≤   ℓ

i+1(t) 
2

n

0
dt +   Φ(t) 2

n

0
dt   and  Wn

i+1 
2

≤   mi+1(t) 
2

n

0
dt     

⇒  Sn
i+1 

2
≤ C (ρ

0
,ν) (1 +  (U

i) 2
2)

3
 (1+ f X

2 )1/2 f X   

 

 and  Wn
i+1 

2
≤ C (ρ

0
,ν) (1 +  Bi 2

2)
3
 (1+ f X

2 )1/2 f X            

  (S
n

i+1, Wn
i+1) 

2
 ≤   (ℓ

i+1, mi+1)(t) 
2

n

o
dt +   Φ(t) 2

n

o
dt 

≤ C (ρ
0
,ν, λ) (1 +  (U

i, Bi) 2
2)

3
 (1+ f X

2 )1/2 f X   

Similarly, we can have: 

 Sn+1
i+1 − Sn

i+1 
2
 ≤   (si+1) 

2

n+1

n
 dt       ...(3.19A) 
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 Wn+1
i+1 −Wn

i+1 
2
 ≤   (wi+1) 

2

n+1

n
 dt. ...(3.19B) 

  Observing (3.17) & the decay of Φ implied by assumption 2.1 we know that integrals 

  si+1 
2

∞

o
dt and   wi+1 

2
dt

∞

o
 are finite. Hence the R.H.S of  (3.19A) and (3.19B) tends to zero as n 

→ ∞. Following a well known argument to prove a contraction lemma we conclude that {Sn
i+1}nϵN and 

{(W
n

i+1)}nϵNare Cauchy sequences in Lσ
2 & have a limit which we denote by    si+1∞

0
(t) dt and 

 wi+1∞

0
(t) dt respectively 

Remark 2: The above lemma also implies that  si+1∞

0
(t) dt and  wi+1∞

0
(t) dt are both finite a.e. in 

R
3       

 

Furthermore we prove the following . 

Lemma 5 : Let (ℓi+1, mi+1) be the solution of (2.9) given by the Theorem 3 with (U
i
,B

i
) & f satisfying 

the assumption of the theorem. The functions si+1 = ℓi+1 +  Φ  &  wi+1 = mi+1  satisfy  

  si+1∞

0
(t) dt  = U

i+1       and  wi+1∞

0
(t) dt  = B

i+1 

Proof : : To prove this lemma we show (  si+1∞

0
(t) dt,  wi+1∞

0
(t) dt)    is a weak solution for (3.1) to 

conclude the desired result. Let {(S
n

i+1)}nϵN and {(W
n

i+1)}nϵNbe as in the previous proof. 

In (3.6) choose φ and ψ to be any member of Ѵ(so that it is constant in time) use the relation si+1 =

ℓi+1 +  Φ  &  wi+1 = mi+1 then integrate in time. 

 (
d

dt

n

0
  si+1 t , φ  +   Ui ∙  ∇si+1, φ −   Bi ∙ ∇wi+1, φ ) 

= − ν   (∇si+1 t , ∇ φ 
n

0
  &                                                      …(3.20A) 

 (
d

dt

n

0
  wi+1, ψ  +  Ui ∙  ∇wi+1, ψ −   Bi ∙ ∇si+1, ψ ) 

= − λ   (∇wi+1, ∇ψ 
n

0
…(3.20B)                       

After changing the order of integration & evaluation the first integral the become 

 si+1 n , φ  +   Ui ∙  ∇Sn
i+1, φ −   Bi ∙ ∇Wn

i+1, φ )= − ν  ∇Sn
i+1, ∇φ  +   f, φ   &  

 wi+1 n , ψ  +   Ui  ∙ ∇Wn
i+1, ψ −   Bi ∙ ∇Sn

i+1, ψ )= − λ  ∇Wn
i+1, ∇ψ   

Observe the first term on the LHS tends to zero as n → ∞ of both the above equations. This follows 

form the decay bound (3.16) 

   Ui ∙ ∇ (S
n

i+1 − S
i+1

), φ     ≤   C  ∇Ui 
2
  (S

n

i+1 − S
i+1

) 
2
 ∇φ 3   

  ≤C  (∇U
i, ∇Bi) 

2
  (S

n

i+1 − S
i+1

) 
2
 ∇φ 3 

Similarly 
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   Bi ∙ ∇ (W
n

i+1 − W
i+1

), ψ     ≤   C  ∇Bi 
2
  (W

n

i+1 − W
i+1

) 
2
 ∇ψ 3   

  ≤C  ∇Bi 
2
  (W

n

i+1 − W
i+1

) 
2
 ∇ψ 3 

As n → ∞ this tends to zero for each test function φ belong to Ѵ, Hence (S
i+1

,W
i+1

)is a weak solution 

of (3.1). The   uniqueness implied by Theorem 2 finishes the proof of the lemma.  

Lemma 6 : Let (U
i+1

, B
i+1

) be the solution of (1.2) given by Theorem 2 with (U
i
,B

i
) & f satisfying 

Assumption of the theorem. Then the function (U
i+1

, B
i+1

) satisfies  

 (U
i+1, Bi+1) 

2
≤  C( ρ

0
,ν)(1+ (Ui, Bi) 2

2 )3
(1+ f X

2 )1/2 f X     …(3.21) 

Remark 3: The constant C( ρ
0
, ν) in the above Theorem tends to ∞ as ρ

0
 → 0 or ν → 0 It tends to 0 as 

ν → ∞ (See Proof of Lemma3)  

Proof  : Define si+1 = ℓi+1 +  Φ  &  wi+1 = mi+1 Just as in the proof of Lemma 5 combine 

Minkowski’s inequality for integral (2.5) & (3.13) but this time use the relation from Lemma 6  

 Ui+1 
2

≤   si+1(t) 
2

n

0
dt 

 ≤   ℓi+1(t) 
2

n

0
dt  +     Φ(t) 2

n

0
dt    & 

 Bi+1 
2
 

≤   wi+1(t) 
2

n

0
dt ≤   mi+1(t) 

2

n

0
dt   

⟹  Ui+1 
2

≤  C( ρ
0
,ν)(1+ Ui 2

2 )3
(1+ f X

2 )1/2 f X 

and  Bi+1 
2

≤ C( ρ
0
,ν)(1+ Bi 2

2 )3
(1+ f X

2 )1/2 f X 

Adding above inequalities and using product norm we get our final result. 

Convergence of (Ui, Bi)  : We now find the limit of the approximating sequence (Ui, Bi) and show 

this is a solution of the steady state MHD equation. We first prove : 

 

Lemma 7 Let (Ui, Bi) be the solution of (1.2) given by Theorem 2 with (Ui, Bi) & satisfies the 

assumption of the theorem. There exists a constant C (ρ
0
,ν) so that if  f X

2  < C (ρ
0
,ν,M)  then 

 (U
i, Bi) 

2
≤ M. 

Proof : By setting the RHS of (3.21A) and (3.21B) equal to M
2
 & considering Z =  f X

2  as a variable 

the proof is reduced to finding proof of the polynomial as below 

Z
2
 +Z = L = 

M2

C (ρ0,ν)(1+M
2)6

 

Here C (ρ
0
,ν) is exactly as in (3.22) since L > 0. This Polynomial always has a strictly  positive root, 

in this case the root is exactly the constant in the statement of the lemma. Indeed, 
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−1+  1+4L

2
  ≤  L  = 

M

 C (ρ0,ν,λ) (1+M
2)3

         ..(3.21) 

 

Theorem 5: Let M > 0 and f satisfy Assumption 1.Then there exists a constant C(ρ o,,M) such that if 

 f X  C(ρ o,,M), the following hold: 

(i)The PDE (1.2) has a weak solution (U, B)  Hσ
1 × Hσ

1 

(ii)This solution satisfies  (U, B) 2  M in addition to (2.1) and this solution is unique among all 

solutions which satisfy (2.1) & have a finite Lσ
2 norm. 

Proof : Chose (U0, B0) Hσ
1 ×  Hσ

1  so that  (U
0, B0) 

2
  M &  (U

0,B0) 
2
  −2  f X

2 . To 

construct such a function one could fix f and then take a solution (U,B) for (1.2). However a priori , 

the solution is not known to be unique or have finite Lσ
2  norm. Following the procedure as mentioned 

in the proof of Theorem 3.17 in Bjorland and Schonbek [04] it is possible to limit Lσ
2 × Lσ

2  norm 

without  increasing the  H 
σ

1
× H 

σ

1
norm. Starting with (U

0, B0) we solve (3.1) recursively using 

Theorem 2 to find a sequence   Ui, Bi  i=0
 . which satisfies  (U

i,Bi) 
2
  −2 f x

2.Then Lemma 6 

gives the uniform bound  (U
i, Bi) 

2
  M. Hence, its limit, if it exists must also satisfy this bound. We 

now show that this sequence is Cauchy in H 
σ

1
× H 

σ

1
  & its limit exists. 

The difference Yi+1= Ui+1− Ui and Zi+1= Bi+1− Bisatisfies the differential equation 

U
i
Y

i+1
 +Y

i
 U

i
 −B

i
 Z

i+1 
- Z

i
 B

i
 = Y

i+1
  ...(3.23A) 

 

&  U
i
Z

i+1
 +Y

i
 B

i
 −B

i
 Y

i+1 
− Z

i
 U

i 
 = Z

i+1
  ...(3.23B) 

Multiply equation (3.36A) by Y
i+1 

and equation (3.36B) by Z
i+1 

respectively we get 

  Yi ∙ ∇Yi+1, Ui   -  Bi ∙ ∇Zi+1, Yi+1   +  Zi ∙ ∇Yi+1, Bi  =   ∇Yi+1 
2

2
  ...(3.24A) 

 

&  Yi ∙ ∇Zi+1, Bi   -  Bi ∙ ∇Zi+1, Yi+1   +  Zi ∙ ∇Zi+1, Ui  =   ∇Zi+1 
2

2
  ...(3.24B) 

Then integrating & adding (3.24A) and (3.24B) and using bilinear relation (2.2) we get 

  ∇Yi+1 
2

2
 +λ  ∇Zi+1 

2

2
    Yi 

6
  Yi+1 

2
  Ui 

3
 

                      +  Zi 
6
  Yi+1 

2
  Bi 

3
+ 

                         +           Yi 
6
  Zi+1 

2
  Bi 

3
  

  +  Zi 
6
  Zi+1 

2
  Ui 

3
 

  Yi 
2
  Yi+1 

2
  Ui 

2
   

+  Zi 
2
  Yi+1 

2
  Bi 

2
  

+         Yi 
2
  Zi+1 

2
  Bi 

2
    

+  Zi 
2
  Zi+1 

2
  Ui 

2
 

  (Yi,Zi) 
2
   (U

i,Bi) 
2
   Yi+1 

2
 

+  (Yi,Zi) 
2
   (U

i,Bi) 
2
  Yi+1 

2
 

+         (Yi,Zi) 
2
   (U

i,Bi) 
2
   Zi+1 

2
  

+  (Yi,Zi) 
2
   (U

i,Bi) 
2
 Zi+1 

2
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 2 (Yi,Zi) 
2
   (U

i,Bi) 
2
   Yi+1 

2
 

 + 2 (Yi,Zi) 
2
   (U

i,Bi) 
2
 Zi+1 

2
 

  
2𝑐1

𝜈
 (Yi,Zi) 

2

2
  (U

i,Bi) 
2

2
  +

𝜈

2
  Yi+1 

2

2
  

    + 
2𝑐1

λ
 (Yi,Zi) 

2

2
  (U

i,Bi) 
2

2
 + 

λ

2
 Zi+1 

2

2

+ 

 

Hence, 

𝜈

2
 ∇Yi+1 

2

2
 +

λ

2
  ∇Zi+1 

2

2
    

𝑐

𝜈
 (Yi,Zi) 

2

2
  (U

i,Bi) 
2

2
 ..(3.25) 

 

using ν < λ and standard product norm in (3.25)we get  

𝜈

2
 (∇Yi+1, ∇Zi+1) 

2

 2
  

𝑐

𝜈
 (Yi,Zi) 

2

2
  (U

i,Bi) 
2

2
 

 (∇Yi+1, ∇Zi+1) 
2

 2
  2C𝜈−2 (Yi,Zi) 

2

2
  (U

i,Bi) 
2

2
 

                       2C𝜈−3M f x (Y
i,Zi) 

2

2
   ….(3.26) 

 

 We note that multiplication by  Yi+1 & Zi+1 is justified since all Ui, Bi and hence all Yi, Zi are 

bounded in Hσ
1.Using this bound recursively, we obtain  

 (∇Yi+1, ∇Zi+1) 
2

2
      (C𝜈−3M  f x)𝑖+1 2 ν

-2
  f x

2 

In the last step, we have used the uniform bound on 

 (∇Ui, ∇Bi) 
2
  ν

-2
  f x

2  

 If    f x <
ν3

CM
   where C is the same as above then (Yi, Zi) tends to zero in  H 

σ

1
×  H 

σ

1
 . This implies 

that (Ui, Bi) 
 is a Cauchy sequence. We denote its limit by(U, B ) .This also ensures (U, B )   M. Using 

standard argument we can now show that (U, B ) is a solution of (1.2 ).  

To see that (U, B )  is the unique solution of (1.2) among all solutions which satisfy (2.1) & have finite 

L
2
 x L

2
 norms , let (U,B) be any other solution which satisfies (2.1) & has a finite Lσ

2 ×  Lσ
2  norm.  

The difference (Y, Z) = (U, B)  (U, B )  solves 

UY + Y U   BZ  Z  B  + p =    Y .   ...(3.27A) 

 

UZ + Y B   BY  Z  U      =    Z .   ...(3.27B) 

Multiplying the equation (3.27A) by Y & (3.27B) by Z and then proceeding in the same manner as in 

the above proof ,we get 

 (∇Y, ∇Z) 2
2  𝐶ν

−3
 M f X  (∇Y, ∇Z) 2

2    

The assumption on f guarantees that if   

 f X <
ν3

CM
   then (Y,Z) must vanish 

this implies that the solution is unique.    

 

 

IV. Conclusion: 

By using Fourier splitting technique developed by M. Schonbek, and a bootstrap argument, 

we have proved the existence of at least one  solution with finite Dirichlet  Integral to steady state 

Magnetohydrodynamic equations  in the whole space. Further, we have shown that these solutions are 
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unique among all solutions with finite energy and finite Dirichlet Integral. In future, building up upon 

these techniques, we intend to prove similar results for non-steady incompressible MHD flows. The 

question of global regularity of MHD flows still remains to be settled. We hope that our results 

proved here will throw some light on this problem, at least in the steady case. 
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