www.iosrjournals.org

On α Generalized Closed Sets In Ideal Topological Spaces

S.Maragathavalli¹ and D.Vinodhini²

¹Department of Mathematics, Karpagam University Coimbatore, TamilNadu,India ²Department of Mathematics, SVS College of Engineering, Coimbatore, TamilNadu, India

Abstract: In this research paper, we are introducing the concept of α -generalized closed sets in Ideal topological space and discussed the characterizations and the properties of α -generalized closed sets in Ideal topological space.

Keywords: Ig closed sets, $l\hat{g}$ -closed set, αIg -closed sets, Semi- I closed set, Pre- I closed set, α - I closed set,b- I closed set.

I. Introduction

The notion of α -open sets was introduced and investigated by Njastad[1]. By using α -open sets, Mashhour et al.[2] defined and studied the concept of α -closed sets, α -closure of a set, α -continuity and α -closedness in topology. Ideals in topological spaces have been considered since 1930. This topic has won its importance by the paper of Vaidyanathaswamy[3]. It was the works of Newcomb[4], Rancin[5], Samuels and Hamlet and Jankovic([6, 7, 8, 9, 10]) which motivated the research in applying topological ideals to generalize the most basic properties in General Topology.

II. Preliminaries

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X, which satisfies the following two conditions:

- (i) If $A \in I$ and $B \subseteq A$ implies $B \in I$
- (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ [11].

An ideal topological space is a topological space (X, τ) with an ideal I on X and it is denoted by (X, τ, I) . Given a topological space (X, τ) with an ideal I on X and if $\rho(X)$ is the set of all subsets of X, a set operator (*): $\rho(X) \to \rho(X)$, called a local function[11] of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I,\tau)=\{x \in X/U \cap A \not\in I \text{ for every } U \in \tau(x)\}$ where $\tau(x)=\{U \in \tau/x \in U\}$. We simply write A^* instead of $A^*(I,\tau)$. For every Ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau)=\{U-i/U \in \tau \& i \in I\}$. But in general (I,τ) is not always a topology. Additionally $cI^*(A)=A \cup A^*$ defines a kuratowski closure operator for $\tau^*(I)$. If $A \subseteq X$, cI(A) and int(A) will, respectively, denote the closure and interior of A in (X,τ) and $int^*(A)$ denote the interior of A in (X,τ) . A subset A of an ideal space (X,τ,I) is *-closed(resp. *-dense in itself) if $A^*\subseteq A$ (resp. $A \subseteq A^*$).

Definition 2.1[13]

A subset A of a topological space (X, τ) is called a generalized closed set (briefly g-closed) if $cl(A) \subseteq A$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.2[15]

A subset A of a topological space (X, τ) is called a α -generalized closed set (briefly αg -closed set) if $\alpha cl(A) \subseteq U$ whenever $A \subset U$ and U is open in (X, τ) .

Definition 2.3[15]

A subset A of a topological space (X, τ) is called $\hat{\mathbf{g}}$ -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Definition 2.4[15]

A subset A of a topological space (X, τ) is said to be

- (i) Pre closed set if cl (int (A)) \subseteq A.
- (ii) Semi closed set if int (cl (A)) \subseteq A.
- (iii) α -closed set if cl(int(cl(A))) \subseteq A.
- (iv) b- closed set if cl(int (A)) \cup int (cl (A)) \subseteq A.

Definition 2.5[12]

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be Ideal generalized closed set (briefly Ig- closed set) if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.6[14]

A subset A of an ideal topological space (X, τ, I) is said to be

- (i) pre-I-closed set if $cl^*(int(A)) \subseteq A$.
- (ii) semi-I-closed set if $int(cl^*(A)) \subseteq A$.
- (iii) α -I-closed set if $cl^*(int(cl^*(A))) \subseteq A$.
- (iv) b-I-closed set if $c1^*$ (int(A)) \cup int ($c1^*$ (A)) \subseteq A.

Definition 2.7 [11]

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be $I\hat{\mathbf{g}}$ -closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Lemma 2.8:[12]

Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (i) $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (ii) $A^* = cl(A^*) \subseteq cl(A),$
- (iii) $(A^*)^* \subseteq A^*$,
- (iv) $(A \cup B)^* = A^* \cup B^*$,
- (v) $(A \cap B)^* \subset A^* \cap B^*$.

III. α-Ideal Generalized Closed sets

Definition 3.1

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be α -Ideal generalized closed set (briefly α Ig- closed set) if $A^*\subseteq U$ whenever $A\subseteq U$ and U is α -open.

Example 3.2

Let $X = \{a,b,c\}$ with topology $\tau = \{\Phi,X,\{a\},\{b\},\{a,b\}\}$ and $I = \{\Phi,\{b\}\}$. The set $A = \{a,c\}$, where $A^* = \{a,c\}$ is an αIg -closed set.

Definition 3.3

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be α -Ideal generalized open set (briefly α Ig- open set) if X- A is α Ig- closed set.

Theorem 3.4

If (X, τ, I) is any ideal space and $A\subseteq X$, then the following are equivalent.

- (a) A is αIg-closed.
- (b) $\operatorname{cl}^*(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.
- (c) For all $x \in cl^*(A)$, $\alpha cl(\{x\}) \cap A \neq \Phi$.
- (d) $cl^*(A)$ –A contains no nonempty α -closed set.
- (e) $A^* A$ contains no nonempty α -closed set.

Proof

(a) \Rightarrow (b): If A is α Ig-closed, then $A^*\subseteq U$ whenever $A\subseteq U$ and U is α -open in X and so $cl^*(A)=A\cup A^*\subseteq U$ whenever $A\subseteq U$ and U is α -open in X. This proves (b).

(b) \Rightarrow **(c)**:Suppose $x \in cl^*(A)$. If $\alpha cl(\{x\}) \cap A = \Phi$, then $A \subseteq X - \alpha cl(\{x\})$. By (b), $cl^*(A) \subseteq X - \alpha cl(\{x\})$, which is a contradiction to $x \in cl^*(A)$. This proves (c).

(c) \Rightarrow (d): Suppose $F \subseteq cl^*(A) - A$, F is α -closed and $x \in F$. Since $F \subseteq X - A$ and F is α -closed, then $A \subseteq X - F$ and hence $\alpha cl(\{x\}) \cap A = \Phi$. Since $x \in cl^*(A)$ by (c), $\alpha cl(\{x\}) \cap A \neq \Phi$. Therefore, $cl^*(A) - A$ contains no nonempty α -closed set.

(d) \Rightarrow (e): Since $cl^*(A) - A = (A \cup A^*) - A = (A \cup A^*) \cap A^c = (A \cap A^c) \cup (A^* \cap A^c) = A^* \cap A^c = A^* - A$. Therefore, $A^* - A$ contains no nonempty α -closed set.

(e) \Rightarrow (a): Let $A \subseteq U$ where U is α -open set. Therefore $X-U \subseteq X-A$ and so $A^* \cap (X-U) \subseteq A^* \cap (X-A) = A^*-A$. Therefore $A^* \cap (X-U) \subseteq A^*-A$. Since A^* is always closed set, $A^* \cap (X-U)$ is a α -closed set contained in A^*-A . Therefore, $A^* \cap (X-U) = \Phi$ and hence $A^* \subseteq U$. Therefore, A is α -closed.

Theorem 3.5

Every *-closed set is αIg-closed set but not conversely.

Proof:

Let A be a *-closed, then $A \subseteq A$. Let $A \subseteq U$, and U is α -open. This implies $A \subseteq U$. Hence A is α Ig-closed.

Example 3.6

Let $X = \{a,b,c\}$ with topology $\tau = \{\Phi,X,\{a\},\{b,c\}\}$ and $I = \{\Phi,\{c\}\}$. It is clear that $A = \{b\}$ is αIg -closed set since $A^* = \{b,c\} \subseteq U$ where U is α -open. But A is not a *-closed set.

Remark 3.7

 α Ig- closed set and α I-closed set are independent to each other, as seen from the following examples.

Example 3.8

Let $X = \{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{b,c\},X\}$ and $I = \{\Phi,\{c\}\}$. Clearly, the set $A = \{b\}$ which is an αI_{σ} -closed set is not an αI_{σ} -closed set since $cl^*(int(cl^*(A))) = \{b,c\} \not\subset A$.

Example 3.9

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,\{a\},\{a,c\},X\}$ and $I=\{\Phi,\{b\}\}$. It is clear that $A=\{c\}$ is an αI -closed set. But A is not an αI -closed set since $A^*=\{b,c\}\not\subset U$.

Remark 3.10

αIg- closed set and semi I-closed set are independent to each other, as seen from the following examples.

Example 3.11

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,\{a\},\{b,c\},X\}$ and $I=\{\Phi,\{c\}\}$. Clearly, the set $A=\{b\}$ is an αIg -closed set but not semi I- closed set since $\operatorname{int}(\operatorname{cl}^*(A))=\{b,c\}\not\subset A$.

Example 3.12

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,\{a\},\{b\},\{a,b\},X\}$ and $I=\{\Phi,\{a\}\}$. It is clear that $A=\{b\}$ which is semi I-closed set. But A is not an αIg -closed set since $A^*=\{b,c\}\not\subset U$.

Remark 3.13

Every pre I-closed set need not be an αIg- closed set.

Example 3.14

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,\{a\},\{a,c\},X\}$ and $I=\{\Phi,\{b\}\}$. Clearly, the set $A=\{c\}$ is pre I- closed set but not an α Ig- closed set since $A^*=\{b,c\} \not\subset U$.

Remark 3.15

αIg- closed set and b I-closed set are independent to each other, as seen from the following examples.

Example 3.16

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{b,c\},X\}$ and $I=\{\Phi,\{c\}\}$. Clearly, the set $A=\{a,b\}$ is an αIg -closed set, but not a b I-closed set, since $\operatorname{cl}^*(\operatorname{int}(A)) \cup \operatorname{int}(\operatorname{cl}^*(A)) = X \not\subset A$.

Example 3.17

Let $X = \{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{a,c\},X\}$ and $I = \{\Phi,\{b\}\}$. It is clear that $A = \{c\}$ is bI-closed set. But A is not an α Ig-closed set since $A^* = \{b,c\} \not\subset U$.

Theorem 3.18

Every αIg-closed set is an Ig- closed set but not conversely.

Proof

Let $A \subseteq U$ and U is open. Clearly every open set is α -open. Since A is αIg -closed set, $A \subseteq U$, which implies that A is an Ig-closed set.

Example 3.19

Let $X = \{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{a,c\},X\}$ and $I = \{\Phi,\{b\}\}$. Clearly, the set $A = \{a,b\}$ is Ig-closed set but not an α Ig-closed set since $A^* = X \not\subset U$.

Theorem 3.20

Every Iĝ-closed set is an αIg-closed set.

Proof

Let $A \subseteq U$ and U is α -open. Clearly, every α -open set is semi-open. Since A is $\mathbf{l\hat{g}}$ -closed set, $\mathbf{A}^* \subseteq U$, which implies that A is an $\alpha \mathbf{lg}$ - closed set.

Theorem 3.21

Let (X,τ,I) be an ideal space. For every $A \in I$, A is αIg -closed set.

Proof

Let $A \subseteq U$ where U is α -open set. Since $A^* = \Phi$ for every $A \in I$, then $A^* \subseteq A$. This implies $A^* \subseteq U$. Hence for every $A \in I$, A is an αIg -closed set.

Theorem 3.22

If A and B are α Ig-closed sets in (X,τ,I) , then $A \cup B$ is also an α Ig-closed set.

Proof

Let $A \cup B \subseteq U$ where U is α -open in X. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are αIg -closed set, then $A^* \subseteq U$ and $B^* \subseteq U$ and so $A^* \cup B^* \subseteq U$. By Lemma 2.8(iv), $(A \cup B)^* = A^* \cup B^* \subseteq U$. Hence $A \cup B$ is an αIg -closed set.

Remark 3.23

The intersection of α Ig-closed sets need not be an α Ig-closed set as shown from the following example.

Example 3.24

Let $X = \{a,b,c,d\}$ with topology $\tau = \{\Phi,\{a\},\{d\},\{a,d\},X\}$ and $I = \{\Phi,\{d\}\}$. If $A = \{b,c\}$, $B = \{b,d\}$, then A and B are αIg -closed sets but their intersection $A \cap B = \{b\}$ is not an αIg -closed set.

Theorem 3.25

If (X, τ, I) is an ideal space, then A^* is always an αIg -closed set for every subset A of X.

Proof

Let $A \subseteq U$, where U is α -open. Since $(A^*)^* \subseteq A^*$ [12], we have $(A^*)^* \subseteq U$ whenever $A \subseteq U$ and U is α -open. Hence A^* is an α Ig-closed set.

Theorem 3.26

If (X, τ, I) is an ideal space, then every αIg -closed, which is α -open is *-closed set.

Proof

Let A be an α Ig-closed and α -open set. Then $A \subseteq A$ implies $A^* \subseteq A$ since A is α -open. Therefore, A is *-closed set.

Theorem 3.27

Let (X, τ, I) be an ideal topological space and A be an α Ig-closed set. Then the following are equivalent.

- (a) A is a *-closed set.
- (b) $cl^*(A) A$ is a α -closed set.
- (c) A^* -A is a α -closed set.

Proof

(a) \Rightarrow (b): If A is *-closed, then A* \subseteq A and so cl*(A) -A =(A \cup A*) -A =Φ. Hence cl*(A) -A is α -closed set.

(b) \Rightarrow **(c)**: Since cl*(A) $-A = A^* - A$ and so $A^* - A$ is α -closed set.

(c) \Rightarrow (a): If A^* -A is a α -closed set, then by Theorem 3.4, A^* -A= Φ and so A is *-closed.

Theorem 3.28

Let (X, τ, I) be an ideal space and $A \subseteq X$. Then A is αIg -closed if and only if A=F-N, where F is *-closed and N contains no nonempty α -closed set.

Proof

If A is α Ig-closed, then by Theorem 3.4(e), N=A* – A contains no nonempty α -closed set. If F= cl*(A), then F is *-closed such that F–N=(A \cup A*) – (A*– A)= (A \cup A*) \cap (A* \cap A°)° = (A \cup A*) \cap ((A*)° \cup A) = (A \cup A*) \cap (A \cup (A*)°) = A \cup (A* \cap (A*)°)=A.

Conversely, suppose A=F-N where F is *-closed and N contains no nonempty α -closed set. Let U be a α -open set such that $A\subseteq U$. Then $F-N\subseteq U\Rightarrow F\cap (X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap (X-U)\subseteq F^*\cap (X-U)\subseteq F\cap (X-U)\subseteq N$. By hypothesis, since $A^*\cap (X-U)$ is α -closed, $A^*\cap (X-U)=\Phi$ and so $A^*\subseteq U$. Hence A is αIg -closed.

Lemma 3.29[11]

Let (X, τ, I) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is *-dense in itself.

Theorem 3.30

Let (X, τ, I) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is αIg -closed, then B is αIg -closed.

Proof

Since A is α Ig-closed then by Theorem 3.4(d), $cl^*(A) - A$ contains no nonempty α -closed set. Since $cl^*(B) - B$ $\subset cl^*(A) - A$ and so $cl^*(B) - B$ contains no nonempty α -closed set. Hence B is α Ig-closed set.

Theorem 3.31

Let (X, τ, I) be an ideal space and $A \subseteq X$. Then, A is αIg -open if and only if $F \subseteq int^*(A)$ whenever F is α -closed and $F \subseteq A$.

Proof

Suppose that A is α Ig-open. Let $F \subseteq A$ and F be α -closed. Then $X-A \subseteq X-F$ and X-F is α -open. Since X-A is α Ig-closed, then $(X-A)^* \subseteq X-F$ and $X-\inf^*(A) = \operatorname{cl}^*(X-A) = (X-A) \cup (X-A)^* \subseteq X-F$ and hence $F \subset \operatorname{int}^*(A)$.

Conversly, Let $X - A \subseteq U$ where U is α -open. Then $X - U \subseteq A$ and X - U is α -closed. By hypothesis, we have $X - U \subseteq \operatorname{int}^*(A)$ and hence $(X - A)^* \subseteq \operatorname{cl}^*(X - A) = X - \operatorname{int}^*(A) \subseteq U$. Therefore X - A is αIg closed and A is αIg open.

Theorem 3.32

Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is αIg open and $int^*(A) \subseteq B \subseteq A$, then B is αIg -open.

Proof

Since A is αIg open, then X-A is αIg closed. By Theorem 3.4(d), $cl^*(X-A)-(X-A)$ contains no nonempty α -closed set. Since $int^*(A) \subseteq int^*(B)$, $X-cl^*(X-A) \subseteq X-cl^*(X-B)$ which implies that $cl^*(X-B) \subseteq cl^*(X-A)$ and so $cl^*(X-B)-(X-B) \subseteq cl^*(X-A)$. Hence B is αIg open.

Theorem 3.33

Let (X, τ, I) be an ideal space. Then, every subset of X is αIg -closed if and only if every α -open set is *-closed.

Proof

Suppose every subset of X is α Ig-closed. If $U \subseteq X$ is α -open, then U is α Ig-closed and so $U^* \subseteq U$. Hence U is *-closed. Conversely, suppose that every α -open set is *-closed. If U is α -open set such that $A \subseteq U \subseteq X$, then $A^* \subseteq U \subseteq X$ and so A is α Ig-closed.

Theorem 3.34

If A and B are α Ig-open sets in (X, τ, I) , then $A \cap B$ is an α Ig-open set.

Proof

If A and B are α Ig-open sets, then X – A and X – B are α Ig-closed sets. By Theorem 3.22,

 $(X-A) \cup (X-B)$ is an αIg -closed set, which implies that $X-(A\cap B)$ is an αIg -closed set. Hence $A\cap B$ is an αIg -open set.

References

- [1]. O.Njastad, On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970
- [2]. A.S. Mashhour, I.N.Hasanein and S.N. El-Deeb,α-continuous and α-open mappings, Acta Math.Hungar,41(1983),213-218.
- [3]. R.Vaidynathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. Math.Sci., 20(1945), 51-61.
- [4]. R.L.Newcomb, Topologies which are compact modulo an ideal Ph.D, Dissertation. Univ.Ca; at Santa Barbara, 1967.
- [5]. D.V. Rancin, Compactness modulo an ideal, Societ Math.Dokl.,13,193-197.1972
- [6]. T.R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita., (7), 4-B, 849-861,1990.
- [7]. T.R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll. Un. Mat. Ita., 7, 863-874, 1990.
- [8]. T.R. Hamlett and D. Jankovic, Ideals in General Topology and Applications (Midletown, CT, 1998), 115-125, Lecture Notes in Pure and Appl. Math. Dekker, New York, 1990.
- [9]. D.Jankovic and T.R. Hamlett, ,New topology from old via ideals, Amer. Math. Month., 97. 295-310. 1990.
- [10]. T.R. Hamlett and D. Jankovic, Compacible extensions of ideals, Boll. Un. Mat. Ita., 7,453-465,1992.
- [11]. J.Antony Rex Rodrigo, O.Ravi, A.Nalini ramalatha, \hat{g} -Closed sets in ideal topological spaces, Method of functional analysis and topology, Vol. 17(2011), no. 3,pp-274-280.
- [12]. O.Ravi, S. Tharmar, J. Antony Rex Rodrigo and M. Sangeetha, Between *-closed sets and I_{*g} -closed sets in ideal topological spaces, International Journal of Advances In Pure and Applied Mathematics, vol 1(2011), 38-51.
- [13]. A.Pushpalatha , S.Eswaran and P.Rajarubi , τ^* -Generalized closed sets in Topological Spaces, Proceedings of the world congress on Engineering 2009,Vol II,WCF 2009,July 1-3, 2009, London, U.K.
- [14]. Erdal Ekict, On Pre –I-Open sets, Semi-I-Open sets and b-I-Open sets in Ideal topological spaces, Acta Universitatis Apulensis ISSN: 1582-5329, No. 30/2012, pp. 293-303.
- [15]. P. Sundaram , N. Rajesh, M. Lellis Thivagar , Zbigniew Duszynski , On g^-closed sets in topological spaces, Mathematica Pannonica, 18/1 (2007), 51–61