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Abstract: Sumathi and Rao (2008) proposed a cure model for the recurrent event count data. The proposed 

model was based on the zero inflated Poisson (ZIP) distribution. Several tests were proposed for testing the 

cured proportion for recurrent event count data (Sumathi and Rao (2010)). In any health related studies, 

whether epidemiological or long term follow up studies, it is very essential for an investigator to record the 

information of patients regarding their demographic and socio-economic status as well as their medical history, 

at the time of clinical examination. These factors, commonly known as covariates, do play a vital role in 

influencing the health status of the individuals. The present paper is an extension of the work of Sumathi and 

Rao (2010). It proposes tests for testing the cured proportion in the presence of covariates when the data are 

uncensored. The covariates are related to the mean parameter of the proposed model, using the log link 

function. Although testing for 0p  has been done in the past (Broek (1995)), testing for 0pp   has not 

been studied for the ZIP model. The small sample performances of the proposed tests are studied using 

simulations. 

Key words: cure model, recurrent event count data, inflated Poisson distribution, covariates, size and power of 

the test. 

 

1. Introduction 
The widely used model in survival analysis is the Cox (1972) proportional hazards (PH) model. This 

model is based on the assumption that every individual in the population under study is susceptible to an adverse 

event such as a disease, and will eventually experience this event if the follow-up is sufficiently long. But the 

advancement in recent medical research has shown that a large proportion of the diseased population is being 

cured of various chronic diseases such as epilepsy and cancer. Hence, the commonly used Cox (1972) PH model 

is not applicable here because of its assumption, which in turn has led to the development of cure models. 

The cure models are survival models basically developed to estimate the proportion of patients cured 

from cancer of mouth and throat, cervix, uteri and breast. Using these models, the investigator can also study the 

causes for the failure of the treatment in the uncured group of patients and obtain the trends in the survival of 

patients suffering from cancer. The two cure models that are extensively used are the mixture model developed 

by Boag (1949) and the bounded cumulative hazard (BCH) model proposed by Yakovlev, et.al. (1993).  

The mixture model and the BCH model are applicable only when the study variable is the time to 

occurrence of an adverse event. The models do not consider the possibilities of the recurrences of the events. 

For example, diseases like epilepsy and malaria could recur during the lifetime of an individual. Sumathi and 

Rao (2008) proposed a cure model for recurrent event count data. The proposed model turned out to be the zero 

inflated Poisson (ZIP) model.  

Some recent references on zero inflated models include that of Bhattacharya, et. al. (2008), 

Williamson, et. al. (2007), Czado and Min (2005) and Gupta, et. al. (2004). While Bhattacharya, et. al. (2008) 

have considered a Bayesian test for testing excess zeroes in a zero inflated power series distribution, 

Williamson, et. al. (2007) have presented power calculations for ZIP models based on the conventional 

likelihood ratio and Wald tests. The study based on the performance of the score test on the zero inflated models 

can be found in Czado and Min (2005) and Gupta, et. al. (2004).   

Several tests were proposed by Sumathi and Rao (2010) for testing the cured proportion in recurrent 

event count data when no covariates were considered. Kannan, et. al. (2010) have proposed a cure model based 

on generalized exponential distribution that incorporates the effects of covariates on the survival time of 

individuals.  

In any health related studies, whether epidemiological or long term follow up studies, it is very 

essential for an investigator to record the information of patients regarding their demographic and socio-

economic status as well as their medical history, at the time of clinical examination. These factors, commonly 

known as covariates, do play a vital role in influencing the health status of the individuals.  
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The present paper is an extension of the work of Sumathi and Rao (2010). While the work by Kannan, 

et. al. (2010) is applicable when the variable of interest is continuous, viz., the time to occurrence of an event, 

the present paper is applicable in situations where the variable of interest is discrete, i.e., the number of 

recurrences of an event. The paper proposes tests for testing the cured proportion where the covariates in the 

study are related to the mean parameter of the proposed cure model using a log link function. Although testing 

for 0p  has been done in the past (Broek (1995)), testing for  0 0p p   has not been studied for the ZIP 

model.  

 The rest of this paper is organized as follows. Section 2 discusses the estimation of the parameters of 

the model. In section 3, tests are proposed for testing the cured proportion, i.e., for testing ,0pp   in the 

presence of covariates. Section 4 gives the small sample performances of the tests with respect to their type I 

error rates and their powers. Section 5 concludes with a discussion.  

The results of the simulations indicate that a variant of the Wald test (see section 3 for details) emerges 

as the best test in terms of maintaining type I error rates and having comparatively more power than the 

remaining tests. The small sample comparison of the powers of the proposed tests, indicate that the powers of 

the tests are more when a continuous covariate is used rather than when a discrete covariate is used. This 

conclusion strengthens the findings arrived at by Bhatta (2003) and does not encourage the categorization of a 

continuous covariate such that it becomes discrete, as in the case of tumor size being categorized as 1, 2, 3, etc., 

when the actual sizes of the tumors are known. 

 

2. Notations and Estimation of parameters 
 As mentioned earlier, the model proposed by Sumathi and Rao (2008) turned out to be a ZIP model. 

The following notations have been used in the sequel with reference to the ZIP model. 

A random variable Y is said to follow a zero inflated Poisson distribution with parameters p  and  ,  

if its probability mass function (p. m. f.) is given by 
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Here, p  denotes the inflate parameter and  denotes the mean parameter. Let nYYY ,...,, 21 denote the number 

of recurrences of the event of interest, for the n  individuals who are on follow up for a sufficiently long period. 

Let  ikiiii xxxxX ,...,,, 210

'  , with 10 ix , denote the values of the baseline covariates for the i
th

 individual. 

These covariates are related to the mean parameter i  of the random variable iY  through the log link function 

 'log ii X , where  k ,...,,, 210

'   denotes the vector of regression coefficients. Let the inflate 

parameter p  of the p. m. f.  given by (1) denote the cured proportion. The likelihood function based on the 

n observations is given by    
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where     'exp ii X  and 
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The maximum likelihood (ML) equation for p  is given by  
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The ML equations for the regression coefficients j , kj ,...,2,1,0 , are given by   
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The ML estimators of the parameters p and   are obtained by solving equation (3) and the 1k equations of 

the form (4), simultaneously. In the present paper, we have used the Newton-Raphson’s iterative technique to 

obtain the ML estimators of the parameters.  

Let the ML estimators of p and   be denoted by


p and 


  respectively. For carrying out inference 

on p , the determination of the restricted ML estimator (MLE) of   (denoted by




 ) when 0pp  (specified) 

is necessary. The vector




  is the solution of the restricted ML equations given by  
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The expected Fisher information matrix is given by 
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where the entries in  ,pF  are given by    
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for ,,...,2,1,0, ksr  sr  .   

 

The following theorem establishes the asymptotic normality of the ML estimators of the proposed model. 

 

Theorem: Under suitable regularity conditions,  
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matrix which is an  identity matrix of dimension 2k .  
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 is the Cholesky square root matrix of the Fisher 

information matrix  ,pF . 

Proof: Follows from Theorem 1 of Czado and Min (2005).  
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3. Tests for cured proportion 
Just as has been done in Sumathi and Rao (2010), we estimate the cured proportion p  in a recurrent 

event count data set when covariates are considered and develop a confidence interval for the same. Since, the 

confidence interval can be obtained by the acceptance region of a test (Lehmann and Romano (2005)), tests are 

proposed for the cured proportion. To be specific, we shall test for the null hypothesis 00 : ppH   against the 

two sided alternative 01 : ppH  . Thirteen tests are proposed, of which the first three are the conventional 

likelihood ratio, Wald and the score tests, while the remaining are the variants of the Wald and the score tests.  

The test statistics are as follows. 

 

3.1 Likelihood Ratio Test (LRT) 

 The LRT statistic for testing the null hypothesis 00 : ppH  is given by  
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The asymptotic null distribution of 1W  is central chi-squared with one degree of freedom. The signed LRT 

statistic for testing one sided alternatives is given by 

  102
ˆsgn WppW               (7)        

 

3.2 Wald Test 

 The Wald test statistic for testing the null hypothesis 00 : ppH   is given by 
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where the standard error of 


p , denoted as 




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 

pSE , can be obtained from the inverse of the Fisher information 

matrix  ,pF . The asymptotic null distribution of  3W  is standard normal. 

 

3.3 Score Test 

Rao (1947) proposed the score test. The advantage of this test is that when the hypothesis is simple, the 

computation of the MLEs is not required. Details of the score test are available in Rao (1973), Cox and Hinkley 

(1974) and Severini (2000). The score test statistic is given by   
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 is the score vector, L  is the likelihood 

function given by (2), and F denotes the Fisher information matrix, the notation which we shall follow in the 

sequel, instead of  ,pF . The parameters p  and j , kj ,...,2,1,0 , in U and F  are replaced by 0p  

and 




j , kj ,...,2,1,0 . The score functions in U  are given by  
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 for kj ,...,2,1,0 . The asymptotic null distribution of 4W  is central chi-squared with one degree of freedom. 

For the one sided alternative hypothesis, the signed score test statistic,  which has the same form as the signed 

LRT statistic given by (7), can be proposed. Asymptotically, the LRT, Wald and the score tests are equivalent 

under the null as well as the alternative hypotheses. The results follow from the standard asymptotics for the 

LRT, Wald and the score tests. For details, see Cox and Hinkley (1974) and Severini (2000). The small sample 

performances of these tests differ. The results of the simulations discussed in section 4.2 indicate the same. 

              

3.4 Variants of the Wald and the Score Tests  

 The standard Wald test uses the estimates 


p and 


 in the Fisher information matrix F  to obtain the 

 pSE ˆ , while the standard score test uses 0p  and 


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 in F . Cox and Hinkley (1974), and Kale (1999) suggest 

that 0p  and 
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 ,  as well as 0p  and 


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  may be used in the Fisher information matrix F  for the computation of 

the Wald test statistic. Similarly, 0p  and 


 ,  and 


p and 


  may be used in F  for the score test. The three 

versions of the score tests which include the standard score test, are examined by Morgan, et. al. (2007).  For the 

present hypothesis, let the variants of the Wald test statistic be denoted as 65  and WW , and that of the score test 

statistic as 7 8 and ,W W  respectively.  

The test statistics 65  and WW  have the same forms as that of the conventional Wald test statistic 3W  

given by (8) except that in the expression for  pSE ˆ  of 3W  , p  and   in F  are replaced by 0p and 


 ,  

respectively to obtain 5W , and by 0p and 


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 , respectively to obtain 6W  . Similarly, 7W  is obtained by 

replacing p  and   in F  by 0p  and 


 , and 8W  on replacement with 


p  and 


 , respectively. Again, these 

test statistics 87  and WW  have the same forms as that of the conventional score test statistic 4W  given by (9).  

 

3.5 New Variants of the Score test 

Motivated by the work of Sumathi and Rao (2010), six new variants of the score test are proposed in 

addition to the tests proposed above. The test statistics are as follows.  
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4. Small sample performances of the test statistics 

As has been done in Sumathi and Rao (2010), the performances of only thirteen test statistics 1W , 3W , 

4W , 5W , 6W , 7W , 8W , 9W , 10W , 11W , 12W , 13W , and 14W  were assessed based on a simulation study by 

including a covariate. The test 2W has not been dealt with since it is the test statistic for one sided alternative, 

while in this paper, only the two sided alternative 01 : ppH  is considered. The simulations were performed 

as follows. 

 

4.1 Description of the simulation experiment  

In the present study, only one covariate has been considered. However, this does not restrict the 

generality of the test statistics when there are 1,2,3,...k  covariates. The single covariate X , has been linked 

to the mean parameter i  using the log link function ii X10log   . 

The performances of the proposed tests have been studied when the covariate was continuous as well as 

discrete. A binary variable was taken for the discrete case. For the continuous case, n  observations were 

generated from standard normal distribution. The observations were then generated from an inflated Poisson 

distribution with parameters p  and  ii X10exp   , ni ,...,2,1 . For a given sample of size n , the 

covariates once generated were fixed and used throughout the 10000 simulations. For the discrete covariate, the 

first 
2

n observations were taken as zero and the remaining were taken as one.  

The simulation configurations were as follows. The level of significance was 05.0 . The sample 

sizes considered were 80,40,20n . The regression coefficients were 2.0,25.0 10   . The values of 

the inflate parameter under the null hypothesis were 5.0,3.00 p . The probability distribution of the covariate 

was standard normal. The number of simulation was 10000. The values of 0  and 1  were determined such 

that the average value of  would be 3. The observed Fisher information matrix was used for the simulations 

since the practitioners are more likely to use the observed Fisher  information matrix rather than the expected 

Fisher information matrix to carry out the tests. For the zero inflated Poisson distribution considered in the 

present paper, the observed conditional Fisher information matrix is given by 
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for ,,...,3,2,1,0, ksr   sr  .  

The value of k was 1 since only one covariate has been used. 

 

4.2 Small sample type I error rates 

The performances of the tests with reference to the attained level of significance (


  ) are evaluated as 

follows. A test is said to maintain type I error rate if 


  is in the interval [0.04, 0.06] i.e., 01.0 . The test is 

liberal if 


 >0.06 and conservative, if 


 <0.04. The test becomes too conservative if 


 <0.02 ( i.e., 60% below 

the nominal level α). When two tests under consideration fail to maintain type I error rates, the test which is 

conservative is preferred to a test which is liberal.  

In the following paragraphs, comparisons between the tests are made in the order of their performances 

with reference to their ability to maintain type I error rates. Table 1 gives the estimated values of type I error 

rates of the tests for sample sizes 20, 40 and 80 when the covariate was continuous. The following are the 

observations based on the table 1 reported. 

When the covariate was continuous, out of the six combinations of n  and 0p  considered, the Wald 

test 3W  and the score test 4W  maintain type I error rates at 4 configurations. For a sample of size n =20, the 

Wald test 3W  is slightly conservative at 3.00 p  and is liberal when testing for 5.00 p  , while the score 

test 4W  is conservative when testing for both values of 0p  considered. When the sample size was increased to 

40 and 80, both the tests maintained type I error rates when testing for both the values of 0p  that were 

considered. The score test 4W  is conservative at 2 configurations whereas the Wald test 3W is conservative at 

one configuration and liberal at the other. Since a conservative test is preferred to a liberal test, the score test 

stands first followed by the Wald test.  

The LRT 1W  and the variants of the Wald test viz., 5W  and  6W  maintain type I error rates at 3 

configurations. The LRT 1W  maintains type I error rate for sample size n =20 and 3.00 p . The test is liberal 

when testing for 5.00 p when the sample size is 20. For a sample of size 40, the test is conservative when 

testing for 3.00 p and is liberal when testing for 5.00 p . For the sample size n =80, the test maintains type 

I error rate  at both the values of  0p  that were considered. The variants of the Wald test viz., 5W  and  6W  

maintain type I error rates when testing for 3.00 p for all the sample sizes considered but are liberal when 

testing for 5.00 p . Since the LRT 1W  is liberal at only two configurations while the tests 5W  and  6W  are 

liberal at three configurations out of the six considered, the LRT is preferred to the tests 5W  and 6W . Therefore, 

the LRT stands third in line based on the simulation experiment with respect to maintaining type I error rates. It 

has already been mentioned in the earlier paragraph that the score test 4W  stands first followed by the Wald test 

3W .  
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The performances of the variants of the score test viz., 7W  and 8W , and the new variant 13W , with 

respect to type I error rates, are alike. Each of them maintain type I error rates at two configurations out of six. 

The test 7W  maintains type I error rate when the sample size n  = 80 for both the values of 0p that were 

considered and is conservative at the remaining 4 configurations.  The test 8W  maintains type I error rate when 

testing for 3.00 p when the sample sizes are 20 and 40 but is liberal at the remaining four configurations. 

The test 13W  is conservative at two configurations and liberal at the remaining two.  The new variants 1210,WW  

and 14W  maintain type I error rates at one  configuration each and are liberal at the remaining five 

configurations, while the tests 9W and 11W  are conservative at all the six configurations.  

Table 2 gives the estimated values of the type I error rates of the thirteen tests for sample sizes 20, 40 

and 80 when the covariate was discrete. The traditional LRT 1W , the Wald test 3W  and the score test 4W  

maintained type I error rate at five configurations out of six, thereby being first in line. These tests were 

conservative when testing for  3.00 p  for a sample of size 20.  

A variant of the score test viz., 7W  maintained type I error rate at four configurations. It maintained 

type I error rate for sample sizes 40 and 80 when testing for both the values of 0p that were considered. The test 

was conservative at the remaining 2 configurations. It was conservative when the sample size was 20 while 

testing for both the values of 0p . The variants 8W  and 13W  of the score test and the variants of the Wald test 

viz., 5W  and  6W  maintained type I error rates at 3 configurations each. The test 13W was conservative at the 

remaining three, while  the tests 8W , 5W  and 6W  were conservative at 1 configuration and liberal at the 

remaining 2.  The new variants of the score test namely, 1210,WW  and 14W  maintained type I error rates at 1 

configuration, became conservative at 1 configuration and were liberal at the remaining 4, while the tests 

9W and 11W  were conservative at all the 6 configurations.  

 Table 3 summarizes the performance of the thirteen tests with respect to the number of times the tests 

maintain type I error rates, the number of times they become conservative and the number of times they are 

liberal, for the various simulation configurations considered. Based on the tables 1, 2 and 3, it is clear that the 

score test 4W  stands first followed by the Wald test 3W  and the likelihood ratio test (LRT) 1W , irrespective of 

the covariate being continuous or discrete, when evaluating the performances of the proposed tests based on 

type I error rates. 

 

4.3 Small sample power comparisons 

 This section presents the small sample power comparisons of the tests.  The simulation configurations 

are similar to those presented in section 4.1 except that the observations are generated from the values of p  and 

 ii X10exp    under the alternative hypothesis, the covariate iX remaining unchanged. During the 

estimation of the type I error rates, the lower and the upper α/2 
th

 percentiles of the null distribution of the test 

statistics were also recorded. The criteria for assessment of the tests based on the powers remain the same as that 

stated in section 5 of Sumathi and Rao (2010). The criteria are as follows.  

(a) Power of the test in the neighborhood of the null hypothesis 00 : ppH   and  

(b) The rate at which the power function attains the value 1. 

The power functions of the tests are obtained for various sample sizes by fixing the values of 0  and 

1 . Figures 1 to 6 show the power functions of the tests for n=20, 40 and 80, when the covariate was 

continuous. The performances of the tests are assessed only in those cases where they maintain type I error 

rates.  

  Figures 1 and 4 show that the powers of some of the tests are very low  1.0 , when the sample size 

was n =20. As seen in the absence of covariates (Sumathi and Rao (2010)), the score test and its variants 

exhibited fluctuations in the power functions (decreasing, or randomly decreasing and increasing after a certain 

stage) rather than increasing on either sides of the specified value of the inflate parameter. For details, see 

Sumathi and Rao (2010), and also Sumathi and Rao (2011). But, as the sample size increased to 40 and 80, the 
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power of all the tests increased considerably on either sides of 0p . The powers of all the tests were 

considerably more on the left of 0p than at an equidistant position on its right.   

The rate of convergence of the power functions to the value 1 also acts as an indicator for evaluating 

the performance of the tests.  From the figures 1 to 6, it is evident that the Wald test 3W  has more power for all 

alternatives in the neighborhood of 0p  compared to the remaining tests. Moreover, the power function of the 

test approaches 1 faster when compared to the remaining tests. Therefore, the Wald test 3W  emerges as the best 

test followed by its variant 5W . 

Figures 7 to 12 show the power functions of the tests for n =20, 40 and 80, when the covariate was 

made discrete. From the figures, it is evident that for the discrete covariate, the conclusions remain the same as 

that of continuous covariate, for all the sample sizes that have been considered here. The Wald test 3W  has 

again more power for all the alternatives in the neighborhood of 0p  when compared to the remaining tests. The 

rate of convergence of the power function of the test to 1 is also faster when compared to the remaining tests and 

thus emerges as the best test. Its variant 5W stands second in line. 

When the covariate was made discrete, the numerical values of the power of the tests were less 

compared to that when a continuous covariate was used. It is a common practice among the applied researchers 

to convert a discrete covariate into a continuous covariate. The results of the simulations suggest that it is not 

advisable to do so. The fluctuations in the values of the power functions of the score test and its variants were 

observed again as has been seen when a continuous covariate was used.  The power functions of the LRT 1W , 

the Wald test and its variant 6W   also exhibit inconsistency when the proportion of zeroes was increased 

to 5.00 p . 

The simulations are restricted to the sample sizes n=20, 40 and 80 because as the sample size increases, 

the simulations were taking considerably more time. It was observed that the increase in the duration was 

mainly for the estimation of the parameters because the number of iterations required for the convergence of the 

Newton-Raphson method was considerably more.  

 

4.4 Small sample performances of the tests when testing for 00 p  

 In this section, we present the small sample performances of the tests with respect to type I error rates 

and powers, when testing for 00 p . Broek (1995) proposed score test for testing the hypothesis 

0: 00 pH . Earlier, tests for the same hypothesis were derived by Cochran (1954) and Rao and Chakravarti 

(1956). However, these two tests are applicable only when there are no covariates. When the parameter space 

for the inflate parameter p is the closed interval  1,0 , 0 is a boundary point of the parameter space. The 

asymptotic null distributions of the likelihood ratio test, the Wald test and any other test which uses the 

unrestricted maximum likelihood estimators of the parameters when testing for hypothesis 0: 00 pH , are 

not chi-squared with one degree of freedom. (For details, see Czado and Min (2005).) We have also conducted 

simulations to study the performances of the various tests proposed in this paper, for testing the hypothesis 

0: 00 pH under the assumption that the parameter space for the inflate parameter p is the interval  1, , 

the value of   is that value of p which satisfies the relation   01  epp . A similar parameter space is 

used by Bhattacharya, et. al. (2008) while proposing the Bayesian test for testing  the hypothesis 0: 00 pH . 

Table 4 gives the estimated values of type I error rates of the tests for sample sizes 20, 40 and 80 while 

testing for 00 p when a continuous covariate was used. For a sample of size n =20, score test 4W  and a 

variant of the Wald test viz., 5W maintain type I error rate. When the sample of size was increased to 40, the 

Wald test 3W , its variant 5W and two variants of the score test viz., 7W  and 12W  maintain the same. When the 

sample size was 80, the LRT 1W  and the Wald test 3W maintain type I error rate. The variant 6W of the Wald 

test and the variants 8W , 9W , 11W  and 13W  of the score test are conservative, whereas the variants 10W  and 

14W  are liberal for all sample sizes considered. From the above results, it is clear that the variant 5W  of the 



Tests for cured proportion for recurrent event count data – Uncensored case with covariates 

www.iosrjournals.org                                                     56 | Page 

Wald test performs well for small sample sizes such as n =20, 40 and for moderate sample sizes, the LRT and 

the Wald test may be used.  

 Table 5 gives the estimated values of type I error rates of the tests for sample sizes 20, 40 and 80 while 

testing for 00 p when a discrete covariate was used. The table shows that the score test 4W  maintains type I 

error rate for all the sample sizes considered while the LRT maintains the same for  n =40 and 80. The test is 

conservative for  n =20. The Wald test 3W and the variants 7W , 9W and 11W  of the score test are conservative 

for all sample sizes, while a variant 5W  of the Wald test and the variants 8W , 10W  and 14W  of the score test 

are liberal for all. The variant 12W  of the score test is conservative for n =20 and 40, whereas the variant 13W is 

liberal for the same. Both these tests maintain type I error rate at n =80. The variant 6W of the Wald test 

maintains type I error rate at n =20 and is liberal for n =40 and 80. From these observations, it is clear that 

when a discrete covariate is used in a ZIP model, the score test 4W  performs well based on type I error rate. 

Figures 13, 14 and 15 show the power functions of the tests for n=20, 40 and 80, when testing for 

00 p in the presence of a continuous covariate while figures 16, 17 and 18 show the same when testing for 

00 p in the presence of a discrete covariate. The graphs show that the powers of the tests are very low. The 

fluctuations are again seen in the power functions of some of the tests as seen in the case of testing for 

3.00 p  and 0.5. The power of a variant 7W  of the score test is more compared that of the remaining tests. 

The variants 12W  and 10W  follow second in line. But as mentioned earlier, the power comparisons of the tests 

become meaningful only when they maintain type I error rates. Since these tests are either conservative or 

liberal at many configurations that have been considered, these tests cannot be recommended. Among the tests 

which maintain type I error rate, the variant 5W of the Wald test has more power and thereby emerges as the 

best. The conclusion here remains the same as that of testing for 3.00 p  and 0.5.  

 

5. Discussion and Conclusion 
 In this paper, we have compared the small sample performance of the tests for testing the cured 

proportion in the presence of a single covariate. The performances were studied based on a continuous and a 

discrete covariate. The variant of the Wald test viz., 5W , where the specified value of the inflate parameter 

p and the unrestricted MLEs 0̂ and 1̂  of the regression coefficients are used, emerges as the best test. 

Although the Wald test has maximum power, as in the case of score test and its variants, it also exhibits 

fluctuations in the powers for a small sample when a discrete covariate is considered. One of the variants of the 

score test viz., 12W also has maximum power next to the Wald test but since it maintains type I error rates at 

lesser number of places compared to all the other tests, it cannot be recommended to the practitioners.  

 Our conclusion regarding the performance of the Wald test as the best for the inflated Poisson 

distribution, agrees well with the conclusion of Czado and Min (2005). It is also observed that a minimum 

sample of size 80 is required so that the tests maintain type I error rates. The power of the tests is considerably 

more on the left of the specified value 0p , than at a point which is equidistant on the right of 0p . The numerical 

values of the powers of the tests were less when the covariate was discrete when compared to that when a 

continuous covariate was used. It is a common practice among the applied researchers to make a continuous 

covariate as discrete, as in the case of tumor size being categorized as 1, 2, 3, etc., when the actual sizes are 

known. But, the powers of the tests obtained from the simulations in the present study, indicates that it is not 

advisable to do so. 

Testing for 00 p  has also been carried out when covariates are included in the recurrent event count 

data cure model. In the past, the performances of the likelihood ratio, Wald and score tests for testing 

00 p have been examined by Broek (1995), Gupta, et. al. (2004), Czado and Min (2005), Williamson, et. al. 

(2007) and Bhattacharya, et.  al.  (2008). The asymptotics for the likelihood ratio and Wald tests is valid only 

when the parameter space for the inflate parameter p  is  1, . This parameter space is meaningful for a ZIP 

model but lacks interpretation for a cure model. Although the present paper is regarding a cure model, the 

investigation regarding the performances of the various tests is carried out when the parameter space is  1,  

as the tests are valid for a ZIP model (not necessarily a cure model). 
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Williamson, et. al. (2007) have derived the asymptotic expressions of the power functions of the 

likelihood ratio, Wald and score tests for a two sample ZIP model. The small sample power comparisons of the 

three tests were also studied. The sample size used for simulations in Broek (1995), Gupta, et. al. (2004), Czado 

and Min (2005), Williamson, et. al. (2007) and Bhattacharya, et.  al.  (2008) was moderate to large, whereas the 

sample size used in the present study was small. Thus the results obtained from the present investigation 

complements the conclusions arrived at in the earlier studies. 

Bhattacharya, et.  al.  (2008) have derived a Bayesian test for testing 0p . The Bayesian tests can be 

extended for testing  00  pp . However, the finite sample computations of these tests being intensive, calls 

for a separate investigation and is beyond the scope of the present paper. 

 

Table 1: Type I error rates of the tests when a continuous covariate is used 

 

n p0 W1 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

20 0.3 0.0471 0.0339 0.0276 0.0497 0.0477 0.0059 0.0492 0.0015 0.0523 0.0008 0.0382 0.0470 0.0508 

40 0.3 0.0297 0.0401 0.0406 0.0499 0.0476 0.0202 0.0526 0.0061 0.0748 0.0054 0.0699 0.0136 0.0695 

80 0.3 0.0433 0.0489 0.0461 0.0538 0.0570 0.0423 0.0621 0.0124 0.1024 0.0137 0.1016 0.0131 0.1014 

20 0.5 0.0964 0.0833 0.0306 0.1544 0.1594 0.0175 0.1771 0.0082 0.0780 0.0090 0.0719 0.0977 0.1530 

40 0.5 0.0675 0.0503 0.0496 0.1236 0.1297 0.0283 0.1355 0.0173 0.0936 0.0171 0.0957 0.0729 0.1355 

80 0.5 0.0536 0.0457 0.0549 0.0810 0.0854 0.0452 0.0903 0.0196 0.1022 0.0185 0.1003 0.0401 0.1135 

 

Table 2: Type I error rates of the tests when a discrete covariate is used 

n p0 W1 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

20 0.3 0.0132 0.0224 0.0205 0.0162 0.0140 0.0049 0.0151 0.0021 0.0293 0.0020 0.0231 0.0111 0.0228 

40 0.3 0.0441 0.0469 0.0507 0.0452 0.0441 0.0428 0.0453 0.0208 0.0789 0.0234 0.0767 0.0101 0.0595 

80 0.3 0.0519 0.0511 0.0531 0.0521 0.0506 0.0501 0.0529 0.0298 0.0848 0.0319 0.0832 0.0228 0.0765 

20 0.5 0.0600 0.0491 0.0410 0.1053 0.1131 0.0298 0.1101 0.0190 0.0533 0.0198 0.0569 0.0550 0.0952 

40 0.5 0.0561 0.0513 0.0520 0.0749 0.0817 0.0409 0.0802 0.0270 0.0755 0.0250 0.0737 0.0469 0.0825 

80 0.5 0.0506 0.0462 0.0490 0.0591 0.0588 0.0461 0.0600 0.0282 0.0729 0.0287 0.0731 0.0458 0.0749 

 

Table 3. Summary of the simulations with respect to type I error rates based on tables 1 and 2 (Values given 

within brackets are the percentages) 
Feature of 

Type I error 

rate 

Covariate 

Type 
W1 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

Maintains 

Continuous 

3 

(50) 

4 

(67) 4(67) 

3 

(50) 3(50) 2(33) 2(33) 0 (00) 1(17) 0(00) 1(17) 2(33) 1(17) 

Discrete 

5 

(83) 5(83) 5(83) 3(50) 3(50) 4(67) 3(50) 0 (00) 1(17) 0(00) 1(17) 3(50) 1(17) 

Conservative 

Continuous 1(17) 1(17) 2(33) 0(00) 0(00) 4(67) 0(00) 6(100) 0(00) 6(100) 0(00) 2(33) 0(00) 

Discrete 1(17) 1(17) 1(17) 1(17) 1(17) 2(33) 1(17) 6(100) 1(17) 6(100) 1(17) 3(50) 1(17) 

Liberal 

Continuous 2(33) 1(17) 0(00) 3(50) 3(50) 0(00) 4(67) 0(00) 5(83) 0(00) 5(83) 2(33) 5(83) 

Discrete 0(00) 0(00) 0(00) 2(33) 1(17) 0(00) 2(33) 0(00) 4(67) 0(00) 4(67) 0(00) 4(67) 

 

Table 4: Type I error rates of the tests while testing for 00 p  when a continuous covariate is used   

n W1 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

20 0.0272 0.0292 0.0423 0.0514 0.0246 0.0380 0.0316 0.0010 0.1565 0.0006 0.0052 0.0273 0.2338 

40 0.0391 0.0415 0.0671 0.0532 0.0144 0.0413 0.0327 0.0000 0.1987 0.0000 0.0528 0.0206 0.2628 

80 0.0501 0.0542 0.0712 0.0651 0.0209 0.0329 0.0382 0.0009 0.187 0.0000 0.0868 0.0154 0.2363 

 

Table 5: Type I error rates of the tests while testing for 00 p  when a discrete covariate is used   

n W1 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

20 0.0326 0.0116 0.0459 0.1340 0.0590 0.0260 0.0965 0.0004 0.1506 0.0000 0.0019 0.0775 0.3232 

40 0.0511 0.0314 0.0533 0.1438 0.0688 0.0140 0.0947 0.0011 0.1405 0.0000 0.0285 0.0727 0.2787 

80 0.0512 0.0348 0.0455 0.1237 0.0717 0.0108 0.0823 0.0026 0.1207 0.0000 0.0457 0.0581 0.2246 
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Power functions of the tests when a continuous covariate was used 

 
 

Power functions of the tests when a discrete covariate was used 
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Power functions of the tests while testing for 0.00 p when a continuous covariate was used 
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