
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 2 Ver. II (Mar-Apr. 2014), PP 60-66 

www.iosrjournals.org 

www.iosrjournals.org                                                    60 | Page 

 

On Solution to Traffic Flow Problem by Method of 

Characteristics 
 

James, Torudonkumo and Eze, Everestus Obinwanne 
Department of Mathematics and Statistics, Caritas University Amorji-Nike, Enugu state Nigeria. 

 

Abstract: Our main purpose in this paper is to use the method of characteristics to solve traffic flow problems 

involving the conservation of cars. The method of characteristics is a technique of solving partial differential 

equations (PDEs) by imposing new coordinates, that is to say, change of coordinates. Note the traffic flow 

equation is classified as hyperbolic equation. We also discussed the relationship between flow rate, density and 

velocity.  
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I. Introduction 
The method of characteristics is a method that is used to solve initial value problems for general first 

order partial differential equations.  The goal of the method of characteristics is to change coordinates, for 

example, from (x, t) to a new coordinate system (xo, s) in which the partial differential equation becomes an 

ordinary differential equation along certain curves in the x,t - plane, along the line x = 0.  This can be done by 

constructing the characteristics for the equations over the region of known initial conditions and proceeding 

along these lines to determine the solutions for later times or for new regions.[Danielle L. Metcalf (2006)]   

Billy M. Williams and Lester A. Hoel (2003) opined on the theoretical basis for modeling univariate 

traffic condition data streams as seasonal autoregressive integrated moving average processes. This foundation 

rests on the Wold decomposition theorem and on the assertion that a one-week lagged first seasonal difference 

applied to discrete interval traffic condition data will yield a weakly stationary transformation. Moreover, 

empirical results using actual intelligent transportation system data are presented and found to be consistent with 

the theoretical hypothesis. 

Conclusions are given on the implications of these assertions and findings relative to ongoing 

intelligent transportation systems research, deployment, and operations. 

More-over, the fundamental traffic flow law implies that q(x,t)=p(x,t)u(x,t) which is the relation of 

velocity, density, and flow rate (flux), an easy way to show this is to consider the number of cars that pass 

x=x<0,x>0 in a very small time ∆t, that is, between t0 and t0+∆t. [Richard Haberman (1998)] 

Thus, few drivers would dispute the fact that congestion is caused by bottleneck, both recurrent and 

non-recurrent, and that the resulting queues can cause further problems if they become too long. Long queues 

can entrap cars do not wish to pass through the bottleneck that generated them, compounding the problem and 

causing spillovers. These can have widespread effects, such as “gridlock”. [Daganzo F. Carlos (1999)] 

In addition, from a practical point of view, it is important to have models that can predict reliably the 

things that matters, that is, bottleneck behavior and queue dynamics. 

Nevertheless, traffic flow problem is a problem that we cannot avoid rather we find solution by 

developing mathematical model. [Richard Haberman] On some interval of roadway, between x=a and x=b 

which is bounded in this case but within this region we encounter “bumper to bumper” traffic which defines 

density at maximum, the number decreases due to cars leaving the region at x=b and it implies maximum 

velocity (light turns green). In addition, cars slow down as the traffic density increases. 

Note the relation between the velocity, density, and flow rate (flux) as stated earlier 

i.e;                                                                                                                1.1  

 where  q=flow rate             

   ρ=density, and           

   u=velocity 

then, the traffic flow equation of conservation of cars is given as 
  

  
 

  

  
 
  

  
                                                                                                          1.2 

 must be solved using the initial condition t=0 

       {
              
             

                                                                                   1.3 
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   The equation (1.2) expresses a relationship between traffic flow derived by assuming that the numbers of cars 

are conserved, that is, cars are not created nor destroyed.    

 

II. Definition Of Some Concept 
 Density-the number of cars per unit distance. 

 Flow-the number of cars per time unit that pass a given point on the highway. 

 Velocity- the rate of change in the position of an object as it moves in a particular direction. 

 Occupancy-the proportion of the road that is covered by cars. 

 

III. Methodology 
Our approach here is to use the Method of Characteristics to solve Traffic Flow problem (1.2) with an initial 

condition t=0. The method of characteristics is a technique for solving partial differential equations. Typically, it 

applies to first order equations, although more generally the method is valid for any hyperbolic partial 

differential equation. Thus, the method is to reduce a partial differential equation to a family of ordinary 

differential equations along which the solution can be integrated from some initial data given on a suitable hyper 

surface.  

 

IV. Main Result/Discussion 
4.1 Conservation of Cars 

Suppose we have a highway of infinite length where the velocity and density are known; can we 

predict the pattern of traffic?  First we consider (x, t) and u(x, t) to be the two fundamental traffic variables.  

We have (x, t) = traffic density, which is the number of cars at time t at position x, and u(x, t) = car velocity at 

position x and time t, traffic flow = q(x, t), which is the number of cars per hour passing position x at time t, and 

thus ),(),(),( txutxtxq  . Then the initial traffic density is (x, 0), which is the traffic density at 

position x and time 0, and the traffic velocity field for all time remains the same, u(x, t).  The motion of each car 

is determined by taking the derivative of position x with respect to t, which satisfies the following first order 

differential equation: 

),( txu
dt

dx
  with 0)0( xx     (4.1) 

Solving equation (4.1) determines the position of each car at future times.  To be able to calculate the 

traffic density at future times we would need to know the traffic velocity and the initial density. 

We want to be able to calculate the density easily if we know the velocity.  We choose an interval on any 

particular roadway between say x = a and x = b, as illustrated below: 

 

 
Figure 1: cars entering and leaving a segment of roadway [1]. 

 

On this interval [a, b], the number of cars, denoted N, is the traffic density integrated: 

   





bx

ax
dxtxtN ,)(        (4.2) 

Even with no exits or entrances on this roadway the number of cars on the interval between x = a and x 

= b could still change in time.  As cars enter at x = a, the number of cars increases and as cars leave at x = b, the 

number of cars decreases, therefore the traffic flow q (a, t) and q (b, t) is not constant in time. 

The rate of change of the number of cars with respect to time, dt
dN

, is equal to the number of cars per 

unit time entering the interval [a, b] at x = a minus the number of cars per unit time exiting the interval [a, b] at x 

= b, where the cars are always moving to the right, as illustrated in the equation below since the rate of change 

of the number of cars per unit time is the traffic flow at position a minus position b both at time t: 
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),(),( tbqtaq
dt

dN
      (4.3) 

Taking the derivative of both sides of equation (4.2) with respect to time gives the following: 

 





bx

ax
dxtx

dt

d

dt

dN
,                  (4.4) 

By combining equation (4.3) and equation (4.4), you get the result: 

  ),(),(, tbqtaqdxtx
dt

d bx

ax





                        (4.5) 

And q(a, t) – q(b, t) can be rewritten by taking the partial derivative of the right hand side of equation 

(4.5) with respect to x, and then taking the integral from x = b to x = a gives the following equation: 

  dx
x

txq
dxtx

dt

d ax

bx

bx

ax 






 




),(
,              (4.6) 

To have the integral with the same interval, we need to use an integral property, which is to take the 

negative of the right hand side of equation (4.6): 

  dx
x

txq
dxtx

dt

d bx

ax

bx

ax 






 




),(
,     (4.7) 

Moving the negative sign inside of the integral gives: 

    (4.8) 

We can now move the dtd  inside of the integral to get the following equation; we can do this 

because derivatives and integrals are interchangeable.  If you move the derivative inside the integral and it has a 

function of two variables, then the derivative becomes a partial derivative:  

  dx
x

txq
dxtx

t

bx

ax

bx

ax 






 






 ),(
,                (4.9) 

Equation (4.9) implies: 

dx
x

txq
tx

t

bx

ax


 















 ),(
),(

= 0   (4.10) 

Equation (4.10) implies: 

0
),(

),( 









x

txq
tx

t


                       (4.11) 

And from equation (4.11) we get 

0
),(),(







x

txq

dt

txd
                         (4.12) 

Suppressing equation (4.12), which is just not including the variables of the function, gives us: 

0





x

q

dt

d
                        (4.13) 

This is the equation of conservation of cars. 

We know from above that uq  , and so therefore we can rewrite the xq   as the following: 

  dx
x

txq
dxtx

dt

d bx

ax

bx

ax 






 




),(
,
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),( uq
xx

q










.    (4.14) 

Which implies 

x

u

u

q

x

q

x

q





















 


             (4.15) 

Now combining equation (4.13) with equation (4.15) we get the following: 

 

0






















x

u

u

q

x

q

t






             (4.16) 

Which is still the conservation of cars since equation (4.16) is the same as equation (4.13). 

Now, assume that )(uu  .Taking the derivative to the velocity with respect to the position, x gives: 

0




x

u
     (4.17)  

Combining equation (4.16) and equation (4.17) we get the following result: 

0













x

q

t






    (4.18) 

4.2 A Velocity-Density Relationship 

 There are many factors that have an effect on the speed at which a car can go since it is operated by an 

individual.  The person operating one car may want to drive faster than another person in a different vehicle.  

Once the traffic becomes a lot heavier, however, lane changing and speed are at a minimum for every driver on 

the road since it is difficult to change lanes when there are more vehicles on the road and it is not always 

possible to go the speed you want when there are more vehicles on the road.  A lot of times you get stuck going 

the same speed at which the flow of traffic is moving. 

 With all of these types of observations, we can make a simplifying assumption that at any point along 

the road the velocity of a car only depends on the density of cars.  This is illustrated in the equation below, 

which was mentioned above in the explanation of the conservation of cars: 

 )(uu       (4.19) 

As mentioned above, cars velocity can be at a maximum when there are very little to no cars at all on 

the road with them.  So when there are no other cars at all on the road, this means that the density is at zero, and 

therefore the velocity will be at a maximum as illustrated with equation (4.17) with the density at zero below: 

max)0( uu     (4.20) 

As more and more cars per mile that join the road way their presence will slow down the car, and as the 

density increases more, the velocity of the cars would continue to decrease.  Thus the rate of change, which is 

the derivative of the velocity with respect to density, is defined as below: 

0)('  


u
d

du
    (4.21) 

Once density is at a maximum, then cars will move at zero velocity, or stand still: 

0)( max u     (4.22) 

Therefore the car velocity vs. the traffic density is steady decreasing. 

 

4.3 Elementary Traffic Model 

As shown above, in general the car velocity is a decreasing function of density.  At zero density, cars 

move the fastest which was denoted maxu and the maximum density was denoted max where the car velocity 

is zero. The simplest relationship to satisfy these properties is let: 
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









max

max 1)(



 uu                    (4.23) 

in which from the fact uq   the flow is given by 

  


















max

2

max

max

max 1








 uuq       (4.24) 

And the density wave velocity satisfies  

    









max

max

2
1'




 uqc        (4.25) 

        [Haberman, R. 2003]. 

 

4.4 Red Light Turning Green 

Now we assume the elementary model of traffic flow so that the traffic density satisfies 

0
2

1
max

max 

















x
u

t






   (4.26) 

Behind a red light position is at zero, x = 0, which is traffic density at its maximum, while ahead of the light the 

traffic density is at zero.  So at time t = 0, the initial conditions for when the light turns green are: 










0,0

0,
)0,(

max

x

x
x


  

The characteristic velocity is  











max

max

2
1




u

dt

dx
    (4.27) 

The density is constant along the characteristics so that they satisfy 

0

max

max

2
1 xtux 












   (4.28)  

The characteristic velocity is maxu  for 0 , while the characteristic velocity is maxu  for

max  .  And thus 










tux

tux
x

max

maxmax

,0

,
)0,(


  

The information that the traffic light turns green spreads backward at density velocity maxu .  This 

is why each car has to wait until the car in front of them moves before they themselves can move.  The 

characteristics are illustrated below: 
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Figure 2 [Haberman, R. 1998] 

 

Fanlike characteristics are where they generate out from the origin, x = 0. 

 

 To obtain the density at other points, we note that the family of fanlike characteristics that all start at

00 x .  Thus in this region  

tux 









max

max

2
1




    (4.29) 

Given x and t in this region, equation (4.29), we can solve for the density: 

 

  









tu

x
tx

max

max 1
2

,



 for tuxtu maxmax             (4.30) 

 

         [Haberman, R. 2003]. 

 

4.5 An Initial Value Problem: 

Suppose that traffic, which is moving uniformly along a single lane road, comes to the end of a line of 

traffic which is stopped at a red light as illustrated below: 

 

 
Figure 3, [Knobel, R. 2000]. A model of traffic approaching stopped traffic. 

 

The cars that are already stopped are lined up with maximum density 1u cars per mile; while the 

approaching cars come to the end of the line have a uniform density 
0u cars per mile.  Since 

1u is the 

maximum possible traffic density, the value of 0u  will satisfy 100 uu  .  From before, we know that 

 txu ,  is the density, or cars per mile, of traffic at position x along the road at time t.  The fluctuation 

 tx,  represents the rate, cars per hour, that at which traffic passes by position x at time t.  Letting 
1v

denote maximum traffic velocity, the linear model for traffic velocity 
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 









1

1 1
u

u
vv

    (4.31) 

results in the constitutive equation, the equation relating fluctuation and traffic density, is 











1

2

1
u

u
uvuv

    (4.32) 

Assuming that the road has no entrances or exits, the basic conservation law fu xt   with fluctuation 

  and source 0f  becomes 

0
2

1
1

1 







 xt u

u

u
vu

            (4.33) 

Let 0x  represent the location of the end of the stopped traffic at 0t .  It is assumed that the stopped traffic 

extends indefinitely in one direction and the incoming traffic extends indefinitely in the other.  In this case, the 

initial value problem 

0
2

1
1

1 







 xt u

u

u
vu ,   x ,  0t   (4.34) 

Models the profile of traffic density  txu ,  at later time t.  [Knobel, Roger (2000)] 

 

V. Conclusion 
So, we succeeded in obtaining the solution and therefore, we achieved our purpose. The method of 

characteristics is a very useful method of solving partial differential equations which was obtained by changing 

the coordinates from (x,t) to a new coordinate system (xo, s) in which the partial differential equation becomes 

an ordinary differential equation with the help of imposing an initial condition t=0. This work is also open to 

numerical approach to solve Traffic Flow Problem. 
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