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Abstract:In this paper, we consider the thinning process of an inclined thin liquid film over a solid boundary 

with an inclination angle   to the horizontal in gravity driven flow. Throughout this work, we assumed that the 

fluid thickness is constant far behind the front and we neglect the thickness of the film at the beginning of the 

motion. The equation of the film thickness is obtained analytically, using the similarity method by which we can 

isolate the explicit time dependence and then the shape of the film will depend on one variable only. The 

solution of the governing equations of the film thickness is obtained numerically by the Rung-Kutta method with 

the aid of Mat lab(ode45). 
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I. INTRODUCTION  
We present here some of the theoretical aspects of the instability development in an inclined thin liquid 

films on a solid  surface in two dimensional coordinate system with an inclination angle   to the horizontal . 

There are different types of phenomena that can occur, such as drainage, details of rupture, non–Newtonian 

surface properties in moving contract lines in thin liquid films [1]. These phenomena can help to describe the 

physical processes that occur in our real world.  [2,3] have studied the case of contact line instabilities of thin 

liquid films but with constant flux configuration and also they considered some global models of  a moving 

contact lines. [4] studied the thin liquid films flowing down the inverted substrate in three dimensional flow. [5] 

investigated the dynamics of an inclined thin liquid films of variable thickness in steady and unsteady cases and 

when the film is stationary and uniform. [6] considered the stability of thin liquid films and sessile droplets. The 

stability of the contact line of thin fluid film flows with constant flux configuration is considered by [7]. [8] 

considered  the  spreading of thin liquid films with small surface tension in the case when the flow is unsteady. 

The  Non-linear analysis of creeping flow on the inclined permeable substrate plane subjected to an electric field 

was considered by [9]. In this paper we investigate the drainage of the inclined thin liquid films  where the 

gravity and  other forces  such as viscous and surface tension forces have a significant effect on the  flow of the 

film. We use the similarity method by which we can isolate the explicit time dependence and then the shape of 

the film will depend on one variable only. The solution of the governing equations of the liquid film thickness is 

obtained numerically.  

 

II. Governing Equations: 

Let  wuq ,  denotes the fluid velocity, where u and w are the velocity components in x and z 

directions respectively. Let  txhz ,  be the equation of the inclined thin liquid films as shown in Figure 

(1) and the flow is in x direction. The continuity equation is given by: 

0









z

w

x

u                                                                                                                                                     (1) 

and from the incompressibility condition, we have 
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and this insures that  
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
 is a function of x and t only. 

The Navier-Stokes equations  in x  and z directions respectively for an inclined thin liquid film are given by:  
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where  ,  and P  are the density, viscosity of fluid and P  the pressure. In lubrication theory the inertia 

terms can be neglected and the Navier-Stokes equations (3) and (4) become  
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III. Boundary Conditions 
The boundary conditions to be imposed on the bounding surfaces are as follows: 

 

The no-slip condition gives  

At  0z   ,   0u                                                                                                           (7) 

The shear stress condition on the surface vanishes, that is:  
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the normal stress condition on the surface of the film is given by 

kw 
                                                                                                                                                      

 (9) 

Where   is the surface tension  and k  is the curvature of the surface which is given by 
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The pressure is related to the normal stress by the formula 
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Now from the continuity equation (1), we have 
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 Differentiate equation (14), we get       
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It is to be noted that 
x

P



  is a function of x and t only on the surface of the  

liquid film z = h ( x , t ).                                                         

Now from the conservation of mass and since the free surface is a stream line,  the derivative following the 

motion ( the material or  

the substantial derivative) 
Dt

DF  must be vanished on z = h ( x , t ) and thus, we have 
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 Where  

F(x,z,t)=z–h(x,t)                                                                                                                                                   (17) 

from equations (16) and (17), we have 
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now substitute equation (2) into equation (18), we obtain 
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on the surface of the liquid film z =  h( x, t), equation (19) then gives 
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IV. Dimensional Analysis: 
We now introduce the following non-dimensional variables as follow:  
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where L, H and U are the characteristics. 

By using the dimensionless variables the continuity equation (1) then gives 
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Also equations (14) in non-dimensional variables has the form    
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Where 



U
Ca   is the capillary number. 

Furthermore the Navier-Stokes equations (5) and (6) in non-dimensional variables are respectively given by 




sin
2

2

2

22

2

Ca

B

z

u

x

u

x

P














                                                                                         (24) 

And   cos
2

2

2

2
2

Ca

B

z

w

x

w

z

P















                                                                          (25) 

Where 


 2gL
B   is the bond number. 

Also equation (20) has the following non-dimensional form    

0
11
















x

u
h

sx

h
u

st

h

                                                                                                              

(26) 

From (23) and on the surface of the film, we have 
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From equations (24) and (27), we get 
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Integrating equation (29) with respect  to z , we get 
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The boundary conditions (7) and (8) in non- dimensional variables have the form: 
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By using the boundary condition (32), equation (30) reduces to give 
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And thus equation (30), gives 
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Integrating equation (34), we get 
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From the boundary condition (31) and equation (35), we have 
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And thus equation (35), then gives 
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Equation (36) represents the governing equation of an inclined thin liquid film over a solid boundary. 

From equation (27), we have 
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Also from (25) and (2), we obtain 
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Since the term in equation (38) 
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Thus from equations (36) and (44), we obtain 
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the second term in equation (45) is very small and so we can neglected 

and  thus equation (45) reduces to give  
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The average velocity over the film thickness is given by  
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 Equations (46) and (47) then give 
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or from equations (26) and (48), we have 
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After simplifications equation (49) reduces to give 
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After simplifications equation (49) reduces to give 

 

V. Similarity Method 
We concentrate on equation (50) since it represents the flow ofa vertical film down a substrate. We have 

assumed through this work that the film thickness is constant far behind the front and this assumption is true 

since the fluid thins out there and so we apply the similarity method to see how this thinning process evolves in 

time.  

for self-similar solution, we assume that  
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where )(tx f  is the front position as shown in figure (1), this method is to isolate the explicit time dependence 

and then the shape of the film will depend on the variable   only.  
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where D and A are the self similar exponents.  

from (51) and (52), equation (50) then gives  
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By equating the exponents of t in equation (54), we get 
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Equation (55) represents the non- linear ordinary differential equation for the  thickness of the inclined thin 

liquid film in ),( H plane fiqures (2) (3) and (4) show that the thickness of liquid film for all liquids 

decreases as the time increases and this is usual .from fiqure (5) and for liquids such as glycerin , linseed oil and 

olive oil the solution curves show that as the angle of the inclination angle increases , the thickness of the liquid 

films increases , while in other liquids such as water ,carbon tetracloride and mercury the case is different,  the 

solution curves show that the thickness of the liquid films increases as the angle of inclination decreases and the 

reason for this distinction will be discussed later in the conclusion. 

  

 

 

VI. Figures And Tables 
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Fig. (1): Sketch of the flow in two–dimensional geometry, where the capillary ridge is just 

                             behind  the flow front. 

 
              (water)                                            (Glyserin)                                      (Carbon Tetrachloride)                                          

 
                (Linseed oil)                                       (Olive oil)                                          (Mercury)    

Fig.(2): Thickness of some thin liquid films  for different inclination angles  namely         =0.174 

                                 = 0.52         = 1.04          = 1.57 

 
                 (water)                                            (Glyserin)                            (Carbon Tetrachloride)                                 
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                   (Linseed oil)                                       (Olive oil)                                          (Mercury)    

Fig.(3): Thickness of thin liquid films in ( ̅  ̅)-plane for   
 

 
 ,for different time        t=1       t=2    

                        t=3            t=4 

 
                 (water)                                          (Glyserin)                                        (Carbon Tetrachloride)  

 
               (Linseed oil)                                         (Olive oil)                                            (Mercury)     

Fig.(4): Thickness of thin liquid films in ( ̅  ̅)-plane for   
 

 
 ,for different time        t=1       t=2        

                           t=3         t=4      

 
                     (water)                                           (Glyserin)                                        (Carbon Tetrachloride)  

 
                  (Linseed oil)                                         (Olive oil)                                            (Mercury)     

Fig.(5): Thickness of thin liquid films in ( ̅  ̅)-plane for   
 

 
 ,for different time        t=1       t=2 

                         t=3         t=4      
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VII. CONCLUSION 
 The dynamicsofafree surface liquid films flowing over an inclined solid boundary with an inclination 

angle to the horizontal is very useful in industrial coating and spinning processes. The non-linear differential 

equation that governs such flow for unsteady case in non-dimensional form is obtained. The similarity method  

is used to solve differential equation for the drainage of an inclined thin  liquid film for different liquids namely 

for water, glycerin, carbon tetrachloride, linseed oil, olive oil, and mercury, this method is very useful since the  

non–linear partial differential equations that governs such flow can be simplified to a single ordinary differential 

equation of one variable. The solution curves of the differential equation shows that the thickness of a liquid 

film increases as the time decreases as the time increases and this is usual.Forthermore, for different liquids such 

as glycerin, linseed oil, and olive oilthe solution curves show that vas the angle of the inclination angle 

increases, the thickness ofyhe liquid films increases and the reason for this is related to small values of 

viscosities for these liquids and large value of the ratio between the Bond number and the capillary number, 

while in the case of other liquids like water, carbon tetrachloride and mercury the case is different, the solution 

curves show that the thickness of the liquid films increases as the angle of inclination decreases since the liquids 

have large viscosities and small vaules of the ratio between the Bond number and the Capillary number.  
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