Periodic Solutions of abstract neutral functional differential equations

Bahloul Rachid¹,Sidki Omar¹

¹ Faculty of sciences and Technology, Fes-Saiss Fes, Morocco

Abstract

We charaterize the existence of periodic solutions for a class of abstract neutral functional differential equations described in

the form:

$$\frac{d}{dt}x(t) = A[x(t) - Bx(t-r)] + L(x_t) + f(t), t \in R$$
 (1)

Keywords: functional differential equations

1. Introduction:

Let X be a Banach space endowed with a norm |.| and r be non negative real number.

The main objective of this paper is to study the existence of periodic solutions for the class of linear abstract neutral differential equations (1):

C = C([-r,0]; X) be the Banach space of continuous functions mapping the interval [-r,0] into X. the function x_t given by $x_t(\theta) = x(t+\theta)$ for θ in appropriate domain, denotes the segment or the "history" of the function x(.) at t.

L is a bounded linear map defined on an appropriate space, and $f:R\to X$ is a locally p-integrable and 2π -periodic function for $1\leq p\prec +\infty$

we assume that $A:D(A)\subseteq X\to X$ and $B\subseteq X\to X$ are closed linear operator

We denote

$$H^{1,p}(T\,;\mathbf{X})=\{u\in L^p(T\,;X)\,:\ni v\in L^p(T;X), \hat{v}(k)=ik\hat{u}(k)forallk\in Z\}$$

2. Preliminaries:

We denote by T the group defined as the quotient $R/2\pi Z$. There is an obvious identification between functions on T and 2π -periodic functions on R. We consider the interval $[0,2\pi)$ as a model for T.

For a function $f \in L^1(T; X)$, we denote by $\hat{f}(k)$, $k \in Z$ the k-th Fourier coefficient of f:

$$\hat{f}(\mathbf{k}) = \frac{1}{2\pi} \int_0^1 e^{-ikt} \mathbf{f}(\mathbf{t}) d\mathbf{t}$$
 for $\mathbf{k} \in \mathbf{Z}$ and $\mathbf{t} \in \mathbf{R}$.

Denote $f_{\tau}(t) := f(t+\tau), \ \tau \in \mathbb{Z}$; then it the follows from the definition that $\hat{f}_{\tau}(\mathbf{k}) = e^{ik\tau} \hat{f}(\mathbf{k}), \ \tau \in \mathbb{T}$.

Let $f \in L^p(T,X)$. Then by Fefer's theorem, one has

$$f = \lim_{n \to \infty} \sigma_n(f)$$

in $L^p(T,X)$ where

$$\sigma_n(\mathbf{f}) := \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e_k \hat{f}(\mathbf{k})$$

with
$$e_k(t) := e^{ikt}$$

A Banach space X is said to be UMD, if the Hilbert transform is bounded on $L^p(R,X)$ for all $p \in (1,\infty)$.

Definition 1: Let X and Y be a Banach spaces. A family of operators $T \subset B(X,Y)$ is called R-bounded, if there is a constant $C \succ 0$ and $p \in [1,\infty)$ such that for each $N \in N, T_j \in T$, $x_j \in X$ and for all independent, symmetric, $\{-1,1\}$ -valued random variables r_j on a probability space (Ω, M, μ) the inequality $\left\|\sum_{j=1}^{N} r_j T_j x_j\right\|_{L^p(\Omega,Y)} \le C \left\|\sum_{j=1}^{N} r_j x_j\right\|_{L^p(\Omega,Y)}$ is valid. The smallest such C is called R-bounded of T, we denot it by $R_p(T)$.

Definition 2: For $1 \le p \infty$ we say that a sequence $\{M_k\}_{k \in \mathbb{Z}} \subset B(X,Y)$ is an L^p -multiplier if, for each $f \in L^p(T,X)$, there exists $u \in L^p(T,Y)$ such that $\hat{u}(k) = M_k \hat{f}(k)$ for all $k \in \mathbb{Z}$.

Theorem 1 :[3, theorem 1.3]

Let X, Y be UMD space and let $\{M_k\}_{k\in Z} \subset B(X,Y)$. If the sets $\{M_k\}_{k\in Z}$ and $\{k(M_{k+1}-M_k)\}_{k\in Z}$ are R-bounded, then $\{M_k\}_{k\in Z}$ is an L^p -multiplier for $1 \prec p \prec \infty$.

3. A Criterion for Periodic Solutions:

We consider: $\Delta_k = ikI - ikB_k - A(I-B_k) - L_k$, for all $k \in \mathbb{Z}$.

Denote by $B_k := e^{-ikr} B$; $L_k(x) := L(e^{ik\theta}x)$ and $e_k(t) := e^{ikt}$ for all $k \in \mathbb{Z}$ and $\sigma_Z(\Delta) = \{k \in \mathbb{Z} : \Delta_k \text{ has no inverse}\}$

And we define : $D_k = (ikI - A(I - B_k) - L_k)^{-1}$

3.1. Existence of Strong Solution:

Definition 3 Let A be a closed linear operator on X. A function x(.) solution of the problem (1) if $x \in H^{1,p}(T;X) \cap L^p(T;X)$ and (1) holds for almost all $t \in [0,2\pi]$

Theorem 2: Let X be a Banach space and $1 \prec p \prec + \infty$. Suppose that for every $f \in L^p(T,X)$ there exists a unique strong solution of Eq. (1). Then

- 1. for every $k \in \mathbb{Z}$ the operator (ikI-A(I- $B_k)$ - L_k) has bounded inverse
- 2. The set is R-bounded and $\{ikD_k\}_{k\in\mathbb{Z}}$ is R-bounded.

Lemma 1 :[2, Lemma 4.2]

Let $u \in C(T,X)$. Then

$$\hat{L(X_s(k))} = \hat{L_k}\hat{x}(k).$$

proof of theorem 2:

Let k∈Z, y∈X

for f(t) =
$$e^{ikr}$$
 y , $\exists x \in H^{1,p}(T,X)$ such that :

$$\frac{dx}{dt}(t) = A(x(t)-Bx(t-r)) + L(x_t) + f(t)$$

Taking fourier transform, L is linear and bounded, we obtain

$$ik\hat{x}(k) = A(I-B_k)\hat{x}(k) + L_k\hat{x}(k) + \hat{f}(k)$$

(ikI-A(I-
$$B_k$$
)- L_k) $\hat{x}(\mathbf{k}) = \hat{f}(\mathbf{k}) = \mathbf{y} \Rightarrow$) (ikI-A(I- B_k)- L_k) is surjective.

Let $x \in \text{Ker}((ik - A(I-B_k)-L_k))$, that is $A(I-B_k)x + L_kx = ikx$, then $u(t)=e_kx$ defines a periodic solution of (1) corresponding to the function f(t)=0. Consequently, u(t)=0 and x=0.

2) let $f \in L^p(T,X)$. By hypothesis, there exists a unique $x \in H^{1,p}(T,X)$ such that (1) equation is valid. Taking

Fourier transforms, we deduce that (ikI-A(I- B_k)- L_k) $\hat{x}(\mathbf{k})=\hat{f}(\mathbf{k})$ for all

 $k \in Z$. Hence

$$ik\hat{x}(k) = ik (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)$$
 for all $k \in \mathbb{Z}$

On the other hand, since $x \in H^{1,p}(T,X)$, there exists $v \in L^p(T,X)$ such that

 $\hat{v}(k)=ik\hat{x}(k)$. This proves claim.

3.2. Existence of weak solution:

Definition 4: Let A be a closed linear operator on X. A function x(.) is called a weak solution of the problem (1) if $: \int_0^t (x(s)-Bx(s-r))ds \in D(A)$ and $x(t) - x(0) = A \int_0^t (x(s)-Bx(s-r))ds + \int_0^t (Lx_s + f(s))ds, \quad 0 \le t \le 2\pi$.

Theorem 3: Let $f \in L^p(T,X)$, Assume that $\overline{D(A)} = X$; if x(.) is said to be a weak solution of Eq (1) then (ikI -A(I-B_k)- L_k) $\hat{x}(k) = \hat{f}(k)$ for all $k \in \mathbb{Z}$ proof: x(.) is a weak solution of Eq (1) then

$$\mathbf{x}(\mathbf{t}) - \mathbf{x}(0) = \mathbf{A} \int_0^t \mathbf{D} \mathbf{x}(\mathbf{s}) d\mathbf{s} + \int_0^t (\mathbf{G} x_s + \mathbf{f}(\mathbf{s})) d\mathbf{s}$$

$$t = 2\pi$$

 $x(2\pi) - x(0) = A \int_0^{2\pi} (x(s) - Bx(s-r)) ds + \int_0^{2\pi} (Lx_s + f(s)) ds$; or $x(2\pi) = x(0)$ then

$$A \int_0^{2\pi} (x(s)-Bx(s-r))ds + \int_0^{2\pi} (Lx_s + f(s))ds = 0$$

$$(AI - B_0 + L_0)\hat{x}(0) + \hat{f}(0) = 0$$

(0-AI – B₀- L₀) $\hat{x}(0) = \hat{f}(0)$ which shows that the assertion holds for k = 0.

Define
$$v(t) = \int_0^t (x(s)-Bx(s-r))ds$$

And
$$g(t) = x(t) - x(0) - \int_0^t (Lx_s + f(s))ds$$

by lemma 3.1 [2]

We have $\hat{v}(k) = \frac{i}{k}(\hat{x}(0) - B\hat{x}(0)) - \frac{i}{k}(\hat{x}(k) - B\hat{x}(k))$ (remark 2.3 [2])

$$\hat{g}(\mathbf{k}) = \hat{x}(\mathbf{k}) - \left[\frac{i}{k}L_0\hat{x}(0) - \frac{i}{k}L_k\hat{x}(\mathbf{k})\right] - \left[\frac{i}{k}\hat{f}(0) - \frac{i}{k}\hat{f}(\mathbf{k})\right]$$

$$\hat{g}(\mathbf{k}) = \hat{x}(\mathbf{k}) - \frac{i}{k} L_0 \hat{x}(0) + \frac{i}{k} L_k \hat{x}(\mathbf{k}) - \frac{i}{k} \hat{f}(0) + \frac{i}{k} \hat{f}(\mathbf{k})$$

$$A\hat{v}(\mathbf{k}) = \frac{i}{k} A(\mathbf{I} - B_0)\hat{x}(0) - \frac{i}{k} A(\mathbf{I} - B_k \hat{x}(\mathbf{k}))$$

Then

$$ik\hat{x}(k) + L_{0}\hat{x}(0) - L_{k}\hat{x}(k) + \hat{f}(0) - \hat{f}(k) = -A(I-B_{0})\hat{x}(0) + A(I-B_{k})\hat{x}(k)$$

$$\Leftrightarrow [ik\hat{x}(k) - A(I-B_{k})\hat{x}(k) - L_{k}\hat{x}(k) - \hat{f}(k)] - [A(I-B_{0})\hat{x}(0) + L_{0}\hat{x}(0) + \hat{f}(0)] = 0$$

$$\Leftrightarrow ik\hat{x}(k) - A(I-B_{k})\hat{x}(k) - L_{k}\hat{x}(k) - \hat{f}(k) = 0$$

$$\Leftrightarrow ik\hat{x}(k) - A(I-B_{k})\hat{x}(k) - L_{k}\hat{x}(k) = \hat{f}(k).$$

Theorem 4 Let $f \in L^p(T,X)$, Assume that $\overline{D(A)} = X$; if x(.) is said to be a weak solution of Eq (2) and $(ikD_k - AD_k - G_k)$ has a bounded inverse. Then $(ikI - A(I - B_k) - L_k)^{-1}$ is an L^p -multiplier.

proof; from theorem (1) we have $\hat{x}(k) = (ikI - A(I - B_k) - L_k)^{-1}\hat{f}(k)$, for all $f \in L^p(T,X)$

Main result:

Our main result in this paper, establish that the converse of theorem (2) and the give the definition of Mild solution

Theorem 5:

Let X be a UMD space and let A : $D(A) \subset X \to X$ be a closed linear operator. The following assertions are equivalent for $1 \prec p \prec \infty$.

- 1. for every $f \in L^p(T,X)$ there exists a unique strong solution of Eq (1)
- for every k ∈ Z the operator (ikI-A(I-B_k)-L_k) has bounded inverse and the set is R-bounded and {ikD_k}_{k∈Z} is R-bounded.

proof:

 $1 \Leftarrow 2$) Let $f \in L^p(T,X)$. Define $D_k = (ikI - A(I - B_k) - L_k)^{-1}$, the family $\{ikD_k\}_{k \in \mathbb{Z}}$ is an L^p -multiplier it is equivalent to the family $\{D_k\}_{k \in \mathbb{Z}}$ is an L^p -multiplier that maps $L^p(T,X)$ into $H^{1,p}(T,X)$, [i.e. there exists $x \in H^{1,p}(T,x)$ such that

$$\hat{x}(k) = D_k \hat{f}(k) = (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)$$

In particular, $x \in L^p(T,X)$ and there exists $v \in L^p(T,X)$ such that

(1.2)
$$\hat{x}'(k) := \hat{v}(k) = ik \hat{x}(k)$$

By Fejer's theorem one has in $L^p([-r_{2\pi},0],X)$

$$x_t(\theta) = \mathbf{x}(\mathbf{t} + \theta) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^n \sum_{k=-m}^m e^{ikt} e^{ik\theta} \hat{x}(\mathbf{k})$$

Hence in $L^p(T,X)$ we obtain

$$x_t = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^n \sum_{k=-m}^m e^{ikt} e_k \hat{x}(\mathbf{k})$$

Then, since L is linear and bounded

$$Lx_t = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^n \sum_{k=-m}^m e^{ikt} L(e_k \hat{x}(\mathbf{k}))$$
$$= \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^n \sum_{k=-m}^m e^{ikt} L_k \hat{x}(\mathbf{k})$$

By (1.1) and (1.2) we have

$$\hat{x}'(\mathbf{k}) = i\mathbf{k}\hat{x}(\mathbf{k}) = \mathbf{A}(\mathbf{I} - B_k)\hat{x}(\mathbf{k}) + L_k\hat{x}(\mathbf{k}) + \hat{f}(\mathbf{k}).$$
 for all $\mathbf{k} \in \mathbf{Z}$.

Then using that A and B are closed we conclude tat $(x(t)-Bx(t-r))\in D(A)$, and from the uniqueness theorem of Fourier coefficients, that equation (2) is valid for $t \in T$.[3. lemma 3.1] Definition 5 : of Mild solution about convert of weak solution

Introduction:

Assume that A generates a C_0 -semigroup T(.) on X; and x(.) is a weak solution, then we have

$$\begin{split} & x(t) - x(0) = & A \int_0^t (x(s) - Bx(s-r)) ds + \int_0^t (Gx_s + f(s)) ds \\ & \int_0^t T(t-s) (x(s) - x(0)) ds = \\ & \int_0^t T(t-s) A \int_0^s (x(\xi) - Bx(\xi-r)) d\xi ds + \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) d\xi ds \\ & = & \int_0^t (T(t-s) - I) (x(s) - Bx(s-r)) ds + \int_0^t T(t-s) \int_0^s (L(x_\xi) + f(\xi)) d\xi ds \\ & \quad Then \end{split}$$

$$\int_0^t T(t-s)(Bx(s-r)-x(0))ds = -\int_0^s (x(s)-Bx(s-r))ds + \int_0^t T(t-s)\int_0^s (L(x_{\xi}) + f(\xi))d\xi ds$$

$$\int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + \int_0^s \mathbf{T}(\mathbf{t} - \mathbf{s}) (\mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = \int_0^t \mathbf{T}(\mathbf{t} - \mathbf{s}) \int_0^s (\mathbf{L}(x_{\xi}) + \mathbf{f}(\xi)) \mathrm{d}\xi \mathrm{d}\mathbf{s}$$

$$A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{B} \mathbf{x}(\mathbf{s} - \mathbf{r})) d\mathbf{s} + A \int_0^s \mathbf{T}(\mathbf{t} - \mathbf{s}) (\mathbf{B} \mathbf{x}(\mathbf{s} - \mathbf{r}) - \mathbf{x}(0)) d\mathbf{s} = A \int_0^t \mathbf{T}(\mathbf{t} - \mathbf{s}) \int_0^s (\mathbf{L}(x_{\xi}) + \mathbf{f}(\xi)) d\xi d\mathbf{s}$$

$$A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{B} \mathbf{x}(\mathbf{s} - \mathbf{r})) d\mathbf{s} + A \int_0^s \mathbf{T}(\mathbf{t} - \mathbf{s}) (\mathbf{B} \mathbf{x}(\mathbf{s} - \mathbf{r}) - \mathbf{x}(\mathbf{0})) d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) + \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) + \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{f}(\xi)) d\xi d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) \int_0^s (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\xi d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} d\mathbf{s} d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} d\mathbf{s} d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} d\mathbf{s} = \int_0^t (\mathbf{L}(x_{\xi}) - \mathbf{I}) d\mathbf{s} d\mathbf$$

$$\begin{array}{l} A \int_0^t (x(s)-Bx(s-r)) ds + \int_0^t (L(x_s)+f(s)) ds = \\ \int_0^t T(t-s)(L(x_s)+f(s)) ds + A \int_0^t T(t-s)(x(0)-Bx(s-r)) ds \end{array}$$

or x(.) is a weak solution then

$$x(t) - x(0) = A \int_0^t T(t-s)(x(0)-Bx(s-r))ds + \int_0^t T(t-s)(L(x_s)+f(s))ds$$

Our object, establish the convese of this result

Definition 6 : Assume that A generates a C_0 -semigroup T(.) on X. A func-

tion x(.) is called a mild solution of the problem (1) if:

$$\int_0^t T(t-s)(x(0)-Bx(s-r))ds \in D(A)$$
 and

$$x(t) - x(0) = A \int_0^t T(t-s) \big(x(0) - Bx(s-r) \big) ds \ + \ \int_0^t T(t-s) \big(L(x_s) + f(s) \big) ds \ \ 0 \le t \le 2\pi.$$

Corollary 1 Assume that A generates a C_0 -semigroup T(.) on X; let $f \in L^p(T,X)$

x(.) is a weak solution $\Leftrightarrow x(.)$ is a mild solution proof:

- ⇒) by introduction
- ←) suppose that x(.) is a mild solution of Eq (2) then

$$x(t) - x(0) = A \int_0^t T(t-s)(x(0)-Bx(s-r))ds + \int_0^t T(t-s)(L(x_s)+f(s))ds$$

$$\begin{split} &\int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = \int_0^t \mathbf{A} \int_0^s \mathbf{T}(\mathbf{t} - \xi) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\xi - \mathbf{r})) \mathrm{d}\xi \mathrm{d}\mathbf{s} + \int_0^t \int_0^s \mathbf{T}(\mathbf{t} - \xi) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\xi \mathrm{d}\mathbf{s} \\ &\int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + \int_0^t \int_0^s \mathbf{T}(\mathbf{t} - \xi) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\xi \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = A \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + A \int_0^t \int_0^s \mathbf{T}(\mathbf{t} - \xi) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\xi \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = A \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = A \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = A \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} + \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{L}(x_\xi) + \mathbf{f}(\xi)) \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} = A \int_0^t (\mathbf{T}(\mathbf{t} - \mathbf{s}) - \mathbf{I}) (\mathbf{x}(0) - \mathbf{B}\mathbf{x}(\mathbf{s} - \mathbf{r})) \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}(\mathbf{s}) - \mathbf{x}(0)) \mathrm{d}\mathbf{s} \\ &A \int_0^t (\mathbf{x}($$

$$\begin{array}{l} {\bf A} \int_0^t ({\bf x}({\bf s}) - {\bf x}(0)) {\rm d}{\bf s} + \int_0^t ({\bf L}(x_s) + {\bf f}({\bf s})) {\rm d}{\bf s} + {\bf A} \int_0^t ({\bf x}(0) - {\bf B}{\bf x}({\bf s} - {\bf r})) {\rm d}{\bf s} = {\bf A} \int_0^t {\bf T}({\bf t} - {\bf s}) ({\bf x}(0) - {\bf B}{\bf x}({\bf s} - {\bf r})) {\rm d}{\bf s} + \int_0^t ({\bf T}({\bf t} - {\bf s}) ({\bf L}(x_s) + {\bf f}({\bf s})) {\rm d}{\bf s} \\ \end{array}$$

$$\underbrace{A\int_{0}^{t} T(t-s)(x(0)-Bx(s-r))ds + \int_{0}^{t} (T(t-s)(L(x_{s})+f(s))ds = A\int_{0}^{t} (x(s)-x(t)-x(0))ds + \int_{0}^{t} T(t-s)(x(0)-Bx(s-r))ds + \int_{0}^{t} T(t-s)(L(x_{s})+f(s))ds = A\int_{0}^{t} (x(s)-x(t)-x(t))ds = A\int_{0}^{t} (x(s)-x(t))ds = A\int_{0}^$$

$$Bx(s-r)ds + \int_0^t (L(x_s) + f(s))ds$$

x(t)-x(0) = $A \int_0^t (x(s)-Bx(s-r))ds + \int_0^t (L(x_s)+f(s))ds$ then x(.) is a weak solution.

Proposition 1: Assume that A generates a C_0 -semigroup T(.) on X. if $(ikI - A(I - B_k) - L_k)^{-1}$ is an L^p -multiplier Then there exists a unique weak(mild) solution of Eq. (1).

proof : let
$$f \in L^{p}(T,X)$$
, then $f(t) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e^{ikt} \hat{f}(k)$ or $(ikI - A(I - B_k) - L_k)^{-1}$ is an L^{p} -multiplier then there exists $x \in L^{p}(T,X)$ such that $\hat{x}(k) = (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)$ put $x_n(t) = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{n=0}^{n} \sum_{k=-m}^{m} e^{ikt} (ikI - A(I - B_k) - L_k)^{-1} \hat{f}(k)$ then $x_n(t) \to x(t)$ and x_n is strong L^{p} -solution of Eq. (1) and x_n verified $x_n(t) - x_n(0) = A \int_0^t ((x_n(t-s)) - Bx_n(t-s)) ds + \int_0^t (G((x_n)_s) + f_n(s)) ds$ we put $y_n = x_n(0)$ then $x_n(t) = y_n + A \int_0^t ((x_n(t-s)) - Bx_n(t-s)) ds + \int_0^t (L((x_n)_s) + f_n(s)) ds$ then $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L((x_n)_s) + f_n(s)) ds$ then $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L((x_n)_s) + f_n(s)) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L((x_n)_s) + f_n(s)) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} ((x_n(t-s)) - Bx_n(2\pi-s)) ds + \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) + f_n(s) ds$ and $x_n(t) = y_n + A \int_0^{2\pi} (L(x_n)_s) +$

$$\frac{d}{dt}x(t) = A(x(t) - Bx(t-r)) + Lx_t + f(t)$$

let A be a closed linear operator and X be a UMD space, and

 $\sup_{k} \|(ikI - A(I - B_k))^{-1}\| = : M \prec \infty \text{ and } \|L\| \prec \frac{1}{r_{2\pi}^{1/p}} \text{then Eq (1) has a unique weak solution.}$ we have $ikI - A(I - B_k) - L_k = [ikI - A(I - B_k)][I - L_k(ikI - A(I - B_k))^{-1}]$ it follows that $ikI - A(I - B_k) - L_k$ is invertible whenever $\|L_k(ikI - A(I - B_k))^{-1}\| \prec 1$ [7. Theorem 1.1.7] observe that $\|L_k\| \le r_{2\pi}^{1/p}\|L\|$ Hence $\|L_k(ikI - A(I - B_k))^{-1}\| \le r_{2\pi}^{1/p}\|L\|M := \alpha$ Therefore, under the condition $\|L\| \prec \frac{1}{r_{2\pi}^{1/p}M}$ $(ikI - A(I - B_k) - L_k)^{-1} = [ikI - A(B_k)]^{-1}[I - L_k(ikI - A(I - B_k)^{-1}]^{-1}$ $= [ikI - A(B_k)]^{-1}\sum_{n=0}^{\infty} [L_k(ikI - A(I - B_k)^{-1}]^n$ it follows that : $\|ik(ikI - A(I - B_k) - L_k)^{-1}\| \le \|ik(ikI - A(I - B_k))^{-1}\|\sum_{n=0}^{\infty} \alpha^n$ $\le \frac{M+1}{1-\alpha}$ then ikD_k is R-bounded.

Bibliographie

- Hernan R.Henriquez, Michelle Pierri, Andrea Prokopczyk Periodic Solutions of abstract neutral functional differential equations, J. Math. Ana. Appl. 385 (2012) 608 - 621
- [2] C.LizamaFourier multipliers and perodic solutions of delay equatons in Banach spaces, J. Math. Anal. Appl. 324 (2006) 921-933.
- [3] W.Arend, S.Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math.Z.240(2002),311-145.
- [4] Y.Hino, T.Naito, N. Van Minh, J.S.Shin, Almost periodic solution of Differential Equations in Banach Spaces, Taylor and Francis, London, 2002.
- [5] J.Wu, Theory and Applications of Partial Differential Equations, Appl, Math .Sci. 119, Springer-verlag, 19969.
- [6] L. Weis: Operator-valued Fourier multiplier theorems and maximal Lpregularity. Preprint 2000.
- [7] Khalil Ezzinbi; Lecture Notes on Differential Equations in Banach Spaces, African University of Science and Technology, 2009.