The Best Growth and Approximation of Entire Functions of Two **Complex Variables in Banach Spaces**

Dr.Deepti Goval, Dr.D.P.Singh

RKGIT, Ghaziabad, DIT School of engineering Gr. Noida

Abstract: In this Paper we are studding the polynomial approximation of entire functions of two complex variables in Banach spaces; concept is depend on index-pair. The characterizations of (p,q) -order of entire functions of two complex variables have been studied in terms of approximation errors. The results can be extended to m-variables but to reduce the mechanical labour we have considered only two variables. **Key Words:** Approximation error, order, type, entire function, index-pair.

Introduction:

Let $\varphi(z_1, z_2) = \sum_{m_1 m_2=0}^{\infty} \{a_{m_1 m_2}(z_1^{m_1}, z_2^{m_2})\}$ be a function of the complex variables z_1 and z_2 , regular for $|z_1| \le r_n$ n = 1,2. If r_1 and r_2 can be taken arbitrarily large, then $\varphi(z_1, z_2)$ represents an entire function of complex variables z_1 and z_2 . Following Bose and Sharma [1] we define the maximum modulus of $\varphi(z_1, z_2)$ as

$$M(r_1, r_2) = \max_{|z_n| \le r_n} |\varphi(z_1, z_2)|$$
, $n = 1, 2$.

The order ρ of the entire function $\varphi(z_1, z_2)$ is defined as [1];

$$\rho = \lim_{r_1, r_2 \to \infty} \sup \frac{\log \log M(r_1, r_2)}{\log(r_1, r_2)}$$

 $\rho = \lim_{r_1, r_2 \to \infty} \sup \frac{\log \log M(r_1, r_2)}{\log(r_1, r_2)}$ Bose and Sharma [1], obtained the following characterizations for order of entire functions of two complex variables.

Theorem 1.1. The entire function $\varphi(z_1.z_2) = \sum_{m_1 m_2=0}^{\infty} \{a_{m_1 m_2}(z_1^{m_1}, z_2^{m_2})\}$ is of finite order if and only if

$$\mu = {\lim}_{m_{1,m_{2} \to \infty}} \sup \frac{\log({{\mathbf{m}_{1}}^{{\mathbf{m}_{1}}}}, {\mathbf{m}_{2}}^{{\mathbf{m}_{2}}})}{\log\left(\left|a_{m_{1},m_{2}}\right|^{-1}\right)}$$

is finite and then the order ρ of $\varphi(z_1, z_2)$ is equal to μ .

Let
$$H_{\vartheta}, \vartheta > 0$$
 denote the space of functions $f(z_1, z_2)$ analytic in the unit bi-disc $U = \{z_1, z_1, \in: |z_1| < 1, |z_2| < 1\}$ Such that $\|\varphi\|_{T_{\vartheta}} = \lim_{r_1, r_2} M_{\vartheta}(\varphi, r_1, r_2) < \infty$,

Where

 $M_{\vartheta}\big(\varphi,r_1,r_2\big) = \Big\{\frac{1}{4\pi^2}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}\left|\varphi(r_1e^{i\theta_1},r_2e^{i\theta_2})\right|^{\vartheta}d\theta_1d\theta_2\Big\}^{1/\vartheta}, \text{ and let } H_{\vartheta}',\vartheta>0 \text{ denote the space of functions } f(z_1,z_2) \text{ analytic in } U \text{ and satisfying the condition}$

$$\|\varphi\|_{T_{\vartheta}} = \left\{\frac{1}{\pi^2} \int_{|z_1| < 1} \int_{|z_2| < 1} |\varphi(z_1, z_2)|^{\vartheta} dx_1 dy_1 dx_2 dy_2\right\}^{1/\vartheta} < \infty$$

 $\|\varphi\|_{\infty} = \sup\{|\varphi(z_1,z_2)|: z_1,z_2 \in U\}$

 H_{ϑ} and H'_{ϑ} , are Banach spaces for $\vartheta \geq 1$ In analogy with spaces of functions of one variable, we call H_{ϑ} and H'_{ϑ} the Hardy and Bergman spaces respectively.

Following the Vakarchuk and Zhir [4] we say that the function $\varphi(z_1, z_2)$ analytic in U belongs to the space B(u, v, k) where $0 < u < v \le \infty$ and $0 < k \le \infty$ if

$$\begin{split} \|\varphi\|_{u,v,k} &= \left\{ \int_0^1 \int_0^1 \{(1-r_1)(1-r_2)\}^{k\left(\frac{1}{u}-\frac{1}{v}\right)^{-1}} M_v^k(\varphi,r_1,r_2) \, dr_1 dr_2 \right\}^{\frac{1}{N}} < \infty \\ &\|\varphi\|_{u,v,\infty} = \sup \left\{ \{(1-r_1)(1-r_2)\}^{\left(\frac{1}{u}-\frac{1}{v}\right)^{-1}} M_v(\varphi,r_1,r_2) \colon 0 < r_1,r_2 < 1 \right\} < \infty \end{split}$$

The space B(u, v, k) is a Banach space for u > 0 and $v, k \ge 1$ otherwise it is a Frechet space. Further, we have

$$H_{\vartheta} \subset H'_{\vartheta} = B\left(\frac{v}{2}, v, v\right), 1 \le v < \infty.$$
 (1.1)

Let Y is a Banach space and let $E_{m_{1,m_{2}}(\varphi,Y)}$ be the best approximation of a function $\varphi(z_{1},z_{2}) \in Y$ by elements of the space Q that consists of algebraic polynomials of degree $\leq m_{1} + m_{2}$ in two complex variables.

$$E_{m_1,m_2(\varphi,Y)} = \inf\{\|\varphi - q\|_Y : q \in Q\}.$$

Recently, Ganti and Srivastava [2] characterized the order and type in terms of the approximation errors $E_{m_1,m_2(\varphi,B(u,v,k))}$ and $E_{m_1,m_2(\varphi,T_{\vartheta})}$. But their results leave to study a big class of entire functions such as slow growth and fast growth. To bridge this gap in this chapter we pick up the concept of (p,q) – order introduced by Juneja et al. [3] and consider it for entire functions of two variables. Roughly speaking, this concept is a modification of the classical definition of order obtained by replacing logarithms by iterated logarithms, where the degrees of iteration are determined by p and q.

To the best of our knowledge, characterizations for the (p,q)-order of entire functions of two complex variables in Banach spaces have not been obtained so far. We define the (p,q)-order of an entire function $\varphi(z_1 z_2)$ by

$$(p,q) = \lim_{r_1, r_2 \to \infty} \sup \frac{\log^p M(r_1, r_2)}{\log^q (r_1, r_2)}$$
 (1.3)

Where p and q are integers such that $p \ge q \ge 1$.

Notations: We are using the following notations in this paper.

(i)
$$log^{[m]}x = exp^{[-m]}x = log(log^{[m-1]}x) = exp(exp^{[-(m-1)]}x)$$
, $m = 0, \pm 1, \pm 2 \dots \dots$
Provided that $0 < log^{[m-1]}x < \infty$ with $log^{[0]}x = exp^{[0]}x = x$.

(ii)
$$\beta^{1/k} \left[(n+1)k + 1; k \left(\frac{1}{u} - \frac{1}{2} \right) \right] = \beta(n, u, 2, k)$$
$$\beta^{1/k} \left[(m+1)k + 1; k \left(\frac{1}{u} - \frac{1}{2} \right) \right] = \beta(m, u, 2, k)$$
$$\beta^{1/k} \left[(n+1)k + 1, k \left(\frac{1}{u} - \frac{1}{v} \right) \right] = \beta(n, u, v, k)$$
$$\beta^{1/k} \left[(m+1)k + 1; k \left(\frac{1}{u} - \frac{1}{v} \right) \right] = \beta(m, u, v, k)$$

II. Basic results:

In this section we have given some lemmas as basic results, which have been used in the sequel.

Lemma 2.1. If $\varphi(z_1, z_2) = \sum_{m_1, m_2 = 0}^{\infty} \{a_{m_1, m_2}(z_1^{m_1}, z_2^{m_2})\}$ be an entire function and for a pair of integers (p, q), $p \ge 2$, $q \ge 1$ $\rho(p, q)$ be defined by (1.3) then

$$\rho(p,q) = P(L(p,q))$$

Where

$$L(p,q) = \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]} \{ (m_1 + m_2) a_{m_1, m_2} \}}{\log^{[q-1]} \{ \frac{1}{m_1 + m_2} \log |a_{m_1, m_2}|^{-1} \}}$$
(2.1)

4.

$$P(L(p,q)) = \begin{cases} L(p,q) & \text{if } p > q \\ 1 + L(p,q) & \text{if } p = q = 2 \\ max(1 + L(p,q)) & \text{if } 3 \le p = q < \infty \\ \infty & \text{if } p = q = \infty \end{cases}$$

And

$$a_{m_{1,m_{2}}} = \begin{cases} (m_{1}^{m_{1}}, m_{2}^{m_{2}})^{\frac{1}{m_{1}+m_{2}}} & ; m_{1,m_{2,}} \geq 1 \ for \ (p,q) = (2,1) \\ 1 & ; m_{1,m_{2,}} \geq 1 \ for \ 2 \leq q \leq p < \infty \\ 0 & ; \ at \ least \ one \ m_{1,m_{2,}} = 0 \end{cases}$$

III. Main Results: In this section we prove our main results.

Theorem3.1: If $\varphi(z_1, z_2) = \sum_{m_1, m_2=0}^{\infty} \{a_{m_1, m_2}(z_1^{m_1}, z_2^{m_2})\}$ be an entire function and for a pair of integers (p, q), $p \ge 2$, $q \ge 1$, be defined by (1.3) then

$$\rho(p,q) = P(L(p,q))$$
 where

$$L'(p,q) = \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]} \{ (m_1 + m_2) a_{m_1, m_2} \}}{\log^{[q-1]} \{ \frac{1}{m_1 + m_2} \log [E_{m_1, m_2}(\varphi, \beta(u, v, k))]^{-1} \}}$$
(3.1)

Proof. We prove the above result in two steps, first we consider the space $\beta(u,v,k)$, v=2,0 < v < 2 and $k \ge 1$. Let $\varphi(z_1.z_2) \in \beta(u,v,k)$ be of (p,q) order $\rho(p,q)$ From (2.1), for any $\varepsilon > 0$ there exists a natural number $m_0 = m_0(\varepsilon)$ such that

$$\left|a_{m_1,m_2}\right| \leq \left[exp^{[q-1]}\left\{log^{[p-2]}\left\{(m_1+m_2)a_{m_1,m_2}\right\}\right\}^{\frac{1}{L^{'}(p,q)+\varepsilon}}\right]^{-(m_1+m_2)}, m_1,m_2>m_0 \quad (3.2)$$

Now first we show that $\rho(p,q) \ge P\left(L'(p,q)\right)$. If $L'(p,q) = \infty$ then $\rho(p,q) = \infty$ or else $\varphi(z_1,z_2)$ is not an entire function. If L'(p,q) = 0, $\rho(p,q) \ge P\left(L'(p,q)\right)$ since $\rho(p,q)$ is nonnegative then we have $0 < \varepsilon < L'(p,q) < \infty$.

We denote the partial sum of the Taylor series of a function $\varphi(z_1, z_2)$ by

$$H_{m_1,m_2}(\varphi,z_1,z_2) = \sum_{i_1=0}^{m_1} \sum_{i_2=0}^{m_2} a_{i_1,i_2} z_1^{i_1}, z_2^{i_2}$$

and

$$E_{m_1,m_2}(\varphi,\beta(u,2,k)) = \|\varphi - H_{m_1,m_2}(\varphi)\|_{u,2,k}$$

$$= \left\{ \int_0^1 \int_0^1 \{(1-r_1)(1-r_2)\}^{k\left(\frac{1}{u}-\frac{1}{2}\right)-1} \left(\sum_{i_1} \sum_{i_2} r_1^{2i_1} r_2^{2i_2} |a_{i_1,i_2}|^2 \right)^{\frac{k}{2}} dr_1 dr_2 \right\}^{\frac{1}{k}} , \quad (3.3)$$
Where

$$\sum_{i_1} \sum_{i_2} r_1^{2i_1} r_2^{2i_2} |a_{i_1,i_2}|^2 = R_1 + R_2 + \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} r_1^{2i_1} r_2^{2i_2} |a_{i_1,i_2}|^2,$$

$$\begin{array}{ll} R_1 = \sum_{i_1=0}^{m_1} \sum_{i_2=m_2+1}^{\infty} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^2 \text{ and } \quad R_2 = \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=0}^{m_2} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^2 \\ \text{Since } \; R_1, R_2 \text{ are bounded and } r_1, r_2 < 1 \text{ ,therefore (3.3) becomes} \end{array}$$

$$E_{m_1,m_2}(\varphi,\beta(u,2,k)) \leq C \left[\int_0^1 \left\{ (1-r)^{k\left(\frac{1}{u}-\frac{1}{2}\right)-1} \right\} r^{(s+1)k} dr \right] \left\{ \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left| a_{i_1,i_2} \right|^2 \right\}^{\frac{1}{2}}$$

Where

$$\begin{split} & \left[\int_0^1 \left\{ (1-r)^{k\left(\frac{1}{u}-\frac{1}{2}\right)-1} \right\} r^{(s+1)k} dr \right] \\ & = \left[\int_0^1 \left\{ (1-r_1)^{k\left(\frac{1}{u}-\frac{1}{2}\right)-1} \right\} r_1^{(m_1+1)k} dr_1 \right] \times \left[\int_0^1 \left\{ (1-r_2)^{k\left(\frac{1}{u}-\frac{1}{2}\right)-1} \right\} r_2^{(m_2+1)k} dr_2 \right] \end{split}$$

Therefore

 $E_{m_1,m_2}(\varphi,\beta(u,2,k)) \le C'\beta(m_1,u,2,k)\beta(m_2,u,2,k)\left\{\sum_{i_1=m_1+1}^{\infty}\sum_{i_2=m_2+1}^{\infty}|a_{i_1,i_2}|^2\right\}^{\frac{1}{2}}$ where C is a constant and $\beta(a,b)(a,b) > 0$ denotes the beta function. In view of (3.2), we have

$$\begin{split} \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left| a_{i_1,i_2} \right|^2 &\leq \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left\{ exp^{[q-1]} \left\{ log^{[p-2]} (i_1+i_2) \right\}_{L+\varepsilon}^{\frac{1}{L+\varepsilon}} \right\}^{-2(i_1+i_2)} \\ &= O(1) \left[exp^{[q-1]} \left\{ log^{[p-2]} (m_1+1+m_2+1) \right\}_{L(p,q)+\varepsilon}^{\frac{1}{L-(p,q)+\varepsilon}} \right]^{-2(m_1+1+m_2+1)} \end{split}$$

Using the above inequality in (3.4) we get

$$E_{m_1 m_2}(\varphi, \beta(u, 2, k)) \le C'' \beta(m_1, u, 2, k)\beta(m_2, u, 2, k)$$

$$\times \left[exp^{[q-1]} \left\{ log^{[p-2]} (m_1 + m_2 + 2) \right\}^{\frac{1}{L'(p,q) + \varepsilon}} \right]^{-(m_1 + m_2 + 2)}$$
(3.5)

The result for has been obtained by Ganti and Srivastava [2].

Now consider for (p, q) = (2, 2)

$$E_{m_1,m_2}\big(\varphi,\beta(u,2,k)\big) \leq C^{''}\beta\big(m_1,u,2,k\big)\beta\big(m_2,u,2,k\big) \times$$

$$\left[exp\{(m_1+1+m_2+1)\}^{\frac{1}{L'(2,2)+\varepsilon}}\right]^{-(m_1+1+m_2+1)}$$

Or

$$\begin{split} & \log E_{m_1,m_2} \Big(\varphi, \beta(u,2,k) \Big) - \log \beta \Big(m_1,u,2,k \Big) - \log \beta \Big(m_2,u,2,k \Big) \\ & \leq \log \left[exp\{ (m_1+1+m_2+1) \}^{\frac{1}{L'(2,2)+\varepsilon}} \right]^{-(m_1+1+m_2+1)} \end{split}$$

7.

Or

$$\begin{split} & \log E_{m_1,m_2} \big(\varphi, \beta(u,2,k) \big) - \log \beta \big(m_1,u,2,k \big) - \log \beta \big(m_2,u,2,k \big) \\ & \leq - (m_1 + m_2 + 2) log \left\{ exp\{ (m_1 + m_2 + 2) \}^{\frac{1}{L'(2,2) + \varepsilon}} \right\} \end{split}$$

Or

$$\frac{1}{\log E_{m_1,m_2}(\varphi,\beta(u,2,k)) - \log \beta(m_1,u,2,k) - \log \beta(m_2,u,2,k)} \ge \frac{1}{-(m_1+m_2+2)\log \left\{ exp\{(m_1+m_2+2)\}^{\frac{1}{L'}(2,2)+\varepsilon} \right\}}$$

Or

$$L'(2,2) + \varepsilon \ge \frac{\log(m_1 + m_2)}{\log\left[-\frac{1}{m_1 + m_2}\left\{\log E_{m_1,m_2}(\varphi,\beta(u,2,k)) - \log \beta(m_1,u,2,k) - \log \beta(m_2,u,2,k)\right\}\right]}$$

Since

$$\left\{\beta\left[(n+1)k+1;k\left(\frac{1}{u}-\frac{1}{2}\right)\right]\right\}^{1/(n+1)} \cong 1.$$
 (3.6)

Now proceeding to limits, we get

mits, we get
$$L'(2,2) \ge \lim_{m_1 + m_2 \to \infty} \sup \frac{\log(m_1 + m_2)}{\log \log [\log E_{m_1, m_2}(\varphi, \beta(u, 2, k))]^{-\frac{1}{(m_1 + m_2)}}}$$

Or

$$P\left(L^{'}(2,2)\right) - 1 \ge \lim_{m_1 + m_2 \to \infty} \sup \frac{\log(m_1 + m_2)}{\log\log[\log E_{m_1,m_2}(\varphi,\beta(u,2,k))]^{-\frac{1}{(m_1 + m_2)}}}$$

Or

$$P(L'(2,2)) - 1 \ge L'(2,2)$$

8.

Or

$$\rho(2,2) \ge P(L'(2,2)) \ge L'(2,2) + 1$$
 (3.7)

Now for $(p, q) \neq (2,1)$ and (2,2) we have from (3.5) that

 $E_{m_1,m_2}(\varphi,\beta(u,2,k)) \le C'' \beta(m_1,u,2,k)\beta(m_2,u,2,k)$

$$\times \left[exp^{[q-1]} \{ log^{[p-2]} (m_1 + m_2 + 2) \}^{\frac{1}{L'(p,q) + \varepsilon}} \right]^{-(m_1 + m_2 + 2)}$$

Or

$$\begin{split} \log E_{m_1,m_2} & \left(\varphi, \beta(u,2,k) \right) - \log \beta \left(m_1,u,2,k \right) - \log \beta \left(m_2,u,2,k \right) \\ & \leq - (m_1 + m_2 + 2) log \left[exp^{[q-1]} \left\{ log^{[p-2]} (m_1 + m_2 + 2) \right\}^{\frac{1}{L'(p,q) + \varepsilon}} \right] \end{split}$$

Taking (3.6) into account, we get

$$\left[E_{m_1,m_2}(\varphi,\beta(u,2,k))\right]^{\frac{-1}{(m_1+m_2)}} \ge exp^{[q-1]} \left\{log^{[p-2]}(m_1+m_2)\right\}^{\frac{1}{L'(p,q)+\varepsilon}}$$
Or

$$log^{[q-1]} \big[E_{m_1 m_2} \big(\varphi, \beta(u, 2, k) \big) \big]^{\frac{-1}{[m_1 + m_2)}} \ge \big\{ log^{[p-2]} (m_1 + m_2) \big\}^{\frac{1}{L'(p,q) + \varepsilon}}$$

Or

$$L^{'}(p,q) + \varepsilon \geq \frac{\log^{[p-1]}(m_1 + m_2)}{\log^{[q]} \left[E_{m_1,m_2} \left(\varphi, \beta(u,2,k) \right) \right]^{\frac{-1}{(m_1 + m_2)}}}$$

Proceeding to limits, we ob

$$L'(p,q) \ge \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]}(m_1 + m_2)}{\log^{[q]} \left[E_{m_1, m_2}(\varphi, \beta(u, 2, k)) \right]^{\frac{-1}{(m_1 + m_2)}}}$$

$$9. \tag{3.8}$$

Combining other results for (p, q) = (2,1) and (2,2) with (3.8) we get

$$\rho(p,q) \ge P\left(L(p,q)\right) \tag{3.9}$$

To prove reverse inequality consider (eq.2.4 [2]) which gives

$$|a_{m_1+1,m_2+1}|\beta(m_1,u,2,k)\beta(m_2,u,2,k) \le E_{m_1,m_2}(\varphi,\beta(u,2,k))$$

Or

$$\log |a_{m_1+1,m_{2+1}}| + \log \beta(m_1,u,2,k) + \log \beta(m_2,u,2,k) \le \log E_{m_1,m_2}(\varphi,\beta(u,2,k))$$

Now using Lemma (2.1), since $\rho(p,q) \ge 1$ for p = q the inequality for $p = q \ge 3$ gives

$$\rho(p,q) \le \max\left(1,L(p,q)\right)$$

and for p > q it gives

$$\rho(p,q) \le L(p,q) \tag{3.10}$$

Hence combining above results we get $\rho(p, q) \le P(L(p, q))$

This is the proof of first step.

Now we consider the space $\beta(u, v, k) \neq 2$ we have

$$E_{m_1,m_2}(\varphi,\beta(u,v,k)) \le \|\varphi - H_{m_1,m_2}(\varphi)\|_{u,v,k}$$

$$= \left\{ \int_{0}^{1} \int_{0}^{1} \{(1-r_{1})(1-r_{2})\}^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} \left(\sum_{i_{1}} \sum_{i_{2}} r_{1}^{2i_{1}} r_{2}^{2i_{2}} \left| a_{i_{1},i_{2}} \right|^{2} \right)^{\frac{k}{v}} dr_{1} dr_{2} \right\}^{\frac{1}{k}}$$
(3.11)

$$\sum_{i_1} \sum_{i_2} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^{v} = R_1 + R_2 + \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^{v},$$

$$\begin{array}{ll} R_1 = \sum_{i_1=0}^{m_1} \sum_{i_2=m_2+1}^{\infty} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^{\nu} \text{ and } \quad R_2 = \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=0}^{m_2} r_1^{2i_1} r_2^{2i_2} \big| a_{i_1,i_2} \big|^{\nu} \\ \text{Since } R_1, R_2 \text{ are bounded and } r_1, r_2 < 1 \text{ ,therefore (3.11) becomes} \end{array}$$

$$E_{m_{1},m_{2}}(\varphi,\beta(u,v,k)) \leq C'' \left[\int_{0}^{1} \left\{ (1-r)^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} \right\} r^{(s+1)k} dr \right] \left\{ \sum_{i_{1}=m_{1}+1}^{\infty} \sum_{i_{2}=m_{2}+1}^{\infty} \left| a_{i_{1},i_{2}} \right|^{v} \right\}^{\frac{1}{v}}$$

Where

$$\begin{split} \left\{ \int_{0}^{1} \left\{ (1-r)^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} \right\} r^{(s+1)k} dr \right\} \\ &= \left\{ \int_{0}^{1} \left\{ (1-r_{1})^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} \right\} r_{1}^{(m_{1}+1)k} dr_{1} \right\} \left\{ \int_{0}^{1} \left\{ (1-r_{2})^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} \right\} r_{2}^{(m_{2}+1)k} dr_{2} \right\} \end{split}$$

Therefore

$$E_{m_{1},m_{2}}(\varphi,\beta(u,v,k)) \leq C''\beta(m_{1},u,v,k)\beta(m_{2},u,v,k) \left\{ \sum_{i_{1}=m_{1}+1}^{\infty} \sum_{i_{2}=m_{2}+1}^{\infty} \left| a_{i_{1},i_{2}} \right|^{v} \right\}^{\frac{1}{v}}, \quad (3.12)$$

Where C'' is constant and $\beta(m, u, v, k)$ is Euler's integral of the first kind. By using (3.2) we have

$$\begin{split} \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left| a_{i_1,i_2} \right|^v &\leq \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left\{ exp^{[q-1]} \left\{ log^{[p-2]} (i_1+i_2) \right\}^{\frac{1}{L'(p,q)+\varepsilon}} \right\}^{-v(i_1+i_2)} \\ &= O(1) \left[exp^{[q-1]} \left\{ log^{[p-2]} (m_1+m_2+2) \right\}^{\frac{1}{L'(p,q)+\varepsilon}} \right]^{-v(m_1+m_2+2)} \end{split}$$

using this inequality in (3.12), we get

 $E_{m_1 m_2}(\varphi, \beta(u, v, k)) \leq C''\beta(m_1 u, v, k)\beta(m_2 u, v, k) \times$

$$\left[exp^{[q-1]}\left\{log^{[p-2]}(m_1+m_2+2)\right\}^{\frac{1}{L'(p,q)+\varepsilon}}\right]^{-v(m_1+m_2+2)}$$
(3.13)

For (p,q) = (2,1) the result has been proved by Ganti and Srivastava [2].

Now (p, q) = (2,2) we have from (3.13) that

$$E_{m_1,m_2} \left(\varphi, \beta(u,v,k) \right) \leq C'' \beta \left(m_1,u,v,k \right) \beta \left(m_2,u,v,k \right) \times \left\{ exp(m_1+m_2+2)^{\frac{1}{L'(2,2)+\varepsilon}} \right\}^{-(m_1+m_2+2)}$$
 Or

 $log E_{m_1,m_2}(\varphi,\beta(u,v,k)) - log \beta(m_1,u,v,k) - log \beta(m_2,u,v,k)$

$$\leq \log \left\{ exp(m_1+m_2+2)^{\frac{1}{L^{'}(2,2)+\varepsilon}} \right\}^{-(m_1+m_2+2)}$$

Or

$$\begin{split} \frac{1}{\log E_{m_1,m_2} \left(\varphi, \beta(u,v,k) \right) - \log \beta \left(m_1,u,v,k \right) - \log \beta \left(m_2,u,v,k \right)} \\ \geq \frac{1}{-(m_1 + m_2 + 2) \log \left\{ exp(m_1 + m_2 + 2)^{\frac{1}{L'(2,2) + \varepsilon}} \right\}} \end{split}$$

Since

$$\beta \left[(n+1)k + 1, k \left(\frac{1}{u} - \frac{1}{v} \right) \right] = \frac{\Gamma(n+1)(k+1)\Gamma\left(k\left(\frac{1}{u} - \frac{1}{v}\right)\right)}{\Gamma\left((n+1)(k+1) + k\left(\frac{1}{u} - \frac{1}{v}\right)\right)}$$

and

$$\left\{ \beta \left[(n+1)k + 1, k \left(\frac{1}{u} - \frac{1}{v} \right) \right] \right\}^{\frac{1}{(n+1)}} \cong 1.$$
 (3.14)

Therefore from above inequality, we ge

$$\frac{1}{\log E_{m_1,m_2}(\varphi,\beta(u,v,k))} \ge \frac{1}{-(m_1+m_2)\log\left\{exp(m_1+m_2)^{\frac{1}{L'(2,2)+\varepsilon}}\right\}}$$

Or

$$\log E_{m_1,m_2} \left(\varphi, \beta(u,v,k) \right) \leq \log \left\{ exp(m_1+m_2)^{\frac{1}{L(2,2)+\varepsilon}} \right\}^{-(m_1+m_2)}$$

Or

$$log\left[E_{m_1 m_2}(\varphi, \beta(u, v, k))\right]^{-\frac{1}{(m_1 + m_2)}} \ge (m_1 + m_2)^{\frac{1}{L'(2, 2) + \varepsilon}}$$

Or

$$L^{'}(2,2) + \varepsilon \geq \frac{\log(m_1 + m_2)}{\log^{[2]} \left[E_{m_1, m_2} \left(\varphi, \beta(u, v, k) \right) \right]^{-\frac{1}{(m_1 + m_2)}}}$$

Proceeding to limits, we get

$$L^{'}(2,2) \geq \lim_{m_{1},m_{2}\to\infty} \sup \frac{\log(m_{1}+m_{2})}{\log^{[2]} \left[E_{m_{1},m_{2}} \left(\varphi,\beta(u,v,k)\right) \right]^{-\frac{1}{(m_{1}+m_{2})}}}$$

Or

$$P\left(L^{'}(2,2)\right)-1\geq \lim_{m_{1},m_{2}\to\infty} \sup\frac{\log(m_{1}+m_{2})}{\log^{[2]}\left[E_{m_{1},m_{2}}\left(\varphi,\beta(u,v,k)\right)\right]^{-\frac{1}{(m_{1}+m_{2})}}}$$

Or

$$P(L'(2,2)) - 1 \ge L'(2,2)$$

Or

$$P(L'(2,2)) \ge L'(2,2) + 1$$
 (3.15)

Now consider the case $(p,q) \neq (2,1)$ and (2,2) from (3.13) we get $\log E_{m_1,m_2}(\varphi,\beta(u,v,k)) - \log \beta(m_1,u,v,k) - \log \beta(m_2,u,v,k) - \log \beta(m_3,u,v,k)$

$$\leq \log \left[exp^{[q-1]} \{ \log^{[p-2]}(m_1+m_2+2) \}^{\frac{1}{L'(p,q)+\varepsilon}} \right]^{-(m_1+m_2+2)}$$

Using (3.14), we obtain

$$\frac{1}{\log E_{m_1,m_2}(\varphi,\beta(u,v,k))} \ge \frac{1}{-(m_1+m_2)\log \left[exp^{[q-1]}\{\log^{[p-2]}(m_1+m_2)\}^{\frac{1}{L'(p,q)+\varepsilon}}\right]}$$

Or

$$\left[\log E_{m_1,m_2} \big(\varphi,\beta(u,v,k)\big)\right]^{-\frac{1}{(m_1+m_2)}} \geq exp^{[q-1]} \big\{\log^{[p-2]}(m_1+m_2)\big\}^{\frac{1}{L'(p,q)+\varepsilon}}$$

Or

$$L^{'}(p,q) + \varepsilon \geq \frac{\log^{[p-1]}(m_1 + m_2)}{\log^{[q]} \left[E_{m_1,m_2} \left(\varphi, \beta(u,v,k) \right) \right]^{-\frac{1}{(m_1 + m_2)}}}$$

Proceeding to limits, immediately we get

$$\rho(p,q) \ge P\left(L(p,q)\right) \tag{3.16}$$

To prove reverse inequality taking (3.12) into account this gives

$$|a_{m_1+1,m_2+1}|\beta(m_1,u,v,k)\beta(m_2,u,v,k) \le E_{m_1,m_2}(\varphi,\beta(u,v,k))$$

Or

$$-log E_{m_1,m_2}(\varphi,\beta(u,v,k)) \leq -log |a_{m_1+1,m_2+1}| - log\beta(m_1,u,v,k) - log\beta(m_2,u,v,k)$$

Again using (3.14), we get

$$\frac{\log(m_1+m_2)}{\log^{[2]}\left[E_{m_1,m_2}\left(\varphi,\beta(u,v,k)\right)\right]^{-\frac{1}{(m_1+m_2)}}} \geq \frac{\log(m_1+m_2)}{\log^{[2]}\left|a_{m_1+1,m_2+1}\right|^{-\frac{1}{(m_1+m_2)}}}$$

In view of lemma (2.1), we obtain

$$L'(2,2) \ge \rho(2,2) - 1$$

Or

$$L'(2,2) + 1 \ge \rho(2,2)$$
 (3.17)

Since $\rho(p,q) \ge 1$ for p=q the inequality for $p=q \ge 3$ gives $\rho(p,p) \le max\left(1,L'(p,p)\right)$ and for p>q it gives

$$\rho(p,q) \le L'(p,q) \tag{3.18}$$

Combining (3.15), (3.16), (3.17) and (3.18) the proof of second step is immediate.

Now consider the third step. Let 0 < u < v < 2 and $k, v \ge 1$.

Since

$$E_{m_{1},m_{2}}\left(\varphi,\beta\left(u_{1},v_{1},k_{1}\right)\right)\leq2^{\left(\frac{1}{u_{1,}}-\frac{1}{v_{1,}}\right)}\left[k\left(\left(\frac{1}{u}-\frac{1}{v}\right)\right)\right]^{\left(\frac{1}{u_{1,}}-\frac{1}{v_{1,}}\right)}E_{m_{1,}m_{2}}\left(\varphi,\beta\left(u,v,k\right)\right)$$

where $u_1 = u$, $v_1 = 2$ and $k_1 = k$ and the condition (3.1) is already proved for the space $\beta(u, 2, k)$ hence

$$\lim_{m_{1}+m_{2}\to\infty} \sup \frac{\log^{[p-1]}\{(m_{1}+m_{2})a_{m_{1}1,m_{2}}\}}{\log^{[q]}[E_{m_{1},m_{2}}(\varphi,\beta(u,v,k))]^{\frac{-1}{(m_{1}+m_{2})}}}$$

$$\geq \lim_{m_{1}+m_{2}\to\infty} \sup \frac{\log^{[p-1]}\{(m_{1}+m_{2})a_{m_{1}1,m_{2}}\}}{\log^{[q]}[E_{m_{1},m_{2}}(\varphi,\beta(u,2,k))]^{\frac{-1}{(m_{1}+m_{2})}}}$$
(3.19)

Now let $0 < u \le 2 < v$.Since

$$M_1(\varphi, r_1, r_2) \le M_2(\varphi, r_1, r_2)$$
, $0 < r_1 < r_2 < 1$.

Therefore

$$E_{m_{1},m_{2}}\left(\varphi,\beta\left(u_{1},v_{1},k_{1}\right)\right) \geq \left\{\int_{0}^{1} \int_{0}^{1} \left\{(1-r_{1})(1-r_{2})\right\}^{k\left(\frac{1}{u}-\frac{1}{v}\right)-1} S \, dr_{1} dr_{2}\right\}$$

$$\geq \left[\left|a_{m_{1},m_{2}}\right| \beta\left(m_{1},u,v,k\right) \beta\left(m_{2},u,v,k\right)\right]$$
16.

where

 $S = inf[M_2^{\kappa}(\varphi - u, r_1, r_2): p \in P]$. Hence we get

$$\lim_{m_1+m_2\to\infty} \sup \frac{\log^{[p-1]}\{(m_1+m_2)a_{m_11,m_2}\}}{\log^{[q]}[E_{m_1,m_2}(\varphi,\beta(u,v,k))]^{\frac{-1}{(m_1+m_2)}}}$$

$$\geq \lim_{m_1+m_2\to\infty} \sup \frac{\log^{[p-1]}\{(m_1+m_2)a_{m_11,m_2}\}}{\log^{[q]}[|a_{m_1,m_2}|]^{\overline{(m_1+m_2)}}} \quad (3.20)$$

In view of (3.19), (3.20) and Lemma 2.1, we get the required result. This is complete proof of the theorem.

Theorem 3.2. If $\varphi(z_1, z_2) = \sum_{m_1, m_2=0}^{\infty} \{a_{m_1, m_2}(z_1^{m_1}, z_2^{m_2})\}$ be an entire function, then for a pair of integers $(p, q), p \ge 2, q \ge 1$ the function $\varphi(z_1, z_2) \in H$ is of (p, q) -order $\rho(p, q)$ if and only if $\rho(p, q) = P(L^{**}(p, q))$

where

$$L^{**}(p,q) = \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]} \{ (m_1 + m_2) a_{m_1, m_2} \}}{\log^{[q-1]} \{ \frac{1}{(m_1 + m_2)} \log [E_{m_1, m_2}(\varphi, H_{\vartheta})]^{-1} \}}.$$
 (3.21)

Proof. Let $\varphi(z_1, z_2) = \sum_{m_1, m_2=0}^{\infty} \{a_{m_1, m_2}(z_1^{m_1}, z_2^{m_2})\} \in H_{\vartheta}$ be an entire transcendental function. Since φ is entire, we have

$$\lim_{m_1, m_2 \to \infty} \left| a_{m_1, m_2} \right|^{\frac{1}{(m_1 + m_2)}} = 0, \quad (3.22)$$

and $\varphi \in H_{\vartheta}$,therefore

$$M_{\vartheta}(\varphi, r_1, r_2) < \infty$$
,

and $\varphi(z_1, z_2) \in \beta(u, v, k), 0 < u < v \le \infty, k \ge 1$. By (1.1) we have

$$E_{m_1,m_2}(\varphi,\beta(v/2,v,v)) \le K E_{m_1,m_2}(\varphi,H_{\theta}), 1 \le v < \infty,$$
 (3.23)

where K is a constant independent of $m_1 m_2$ and φ In the case of space H_{∞}

$$E_{m_1 m_2}(\varphi, \beta(u, \infty, \infty)) \le E_{m_1 m_2}(\varphi, H_{\vartheta}), 0 < u < \infty.$$
 (3.24)

From (3.23) we have

$$\begin{split} \xi(\varphi) &= \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]} \left\{ (m_1 + m_2) a_{m_1, m_2} \right\}}{\log^{[q-1]} \left\{ \frac{1}{(m_1 + m_2)} \log \left[E_{m_1, m_2}(\varphi, H_{\theta}) \right]^{-1} \right\}} \\ &\geq \lim_{m_1 + m_2 \to \infty} \sup \frac{\log^{[p-1]} \left\{ (m_1 + m_2) a_{m_1, m_2} \right\}}{\log^{[q-1]} \left\{ \frac{1}{(m_1 + m_2)} \log \left[E_{m_1, m_2}(\varphi, \beta(v/2, v, v)) \right]^{-1} \right\}} \end{split}$$

$$\geq L^{**}(p,q), 1 \leq v \leq \infty,$$
 (3.25)

using (3.24) we prove inequality (3.25) for the case $v = \infty$.

For the reverse inequality, we have

$$E_{m_1,m_2}(\varphi,H_{\vartheta}) \le O(1) \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left| a_{i_1,i_2} \right|$$

using (3.2) we have

$$E_{m_1,m_2}(\varphi,H_{\vartheta}) \leq O(1) \sum_{i_1=m_1+1}^{\infty} \sum_{i_2=m_2+1}^{\infty} \left\{ exp^{[q-1]} \left\{ log^{[p-2]}(i_1+i_2)a_{i_1,i_2} \right\}^{\frac{1}{L'(p,q)+\varepsilon}} \right\}^{-2(i_1+i_2)}$$

Or

$$E_{m_1,m_2}(\varphi,H_{\vartheta}) \leq O(1) \left[exp^{[q-1]} \left\{ log^{[p-2]}(i_1+i_2)a_{i_1,i_2} \right\}^{\frac{1}{L'(p,q)+\varepsilon}} \right]^{-2(m_1+1+m_2+1)}$$

which gives

$$L'(p,q) + \varepsilon \ge \frac{\log^{[p-1]}\{(m_1 + m_2)a_{m_1,m_2}\}}{\log^{[q]}\left[E_{m_1,m_2}(\varphi,H_{\theta})\right]^{\frac{-1}{(m_1+m_2)}}}$$

Proceeding to limits we get

$$L'(p,q) \ge \xi(\varphi) \tag{3.26}$$

In the consequence of Theorem 3.1 with (3.25) and (3.26) we obtain the result immediately. Now to prove sufficiency, assume that the condition (3.21) is satisfied. Then it follows that

$$\log \left[\frac{1}{E_{m_1,m_2}(\varphi,H_{\vartheta})} \right]^{\frac{1}{(m_1+m_2)}} \to \infty \quad as \ m_1+m_2 \to \infty.$$

It gives

$$\lim_{m_1 + m_2 \to \infty} \left[\frac{1}{E_{m_1, m_2}(\varphi, H_{\theta})} \right]^{\frac{1}{(m_1 + m_2)}} = 0.$$

This relation and the estimate $|a_{m_1,m_2}(\varphi)| \leq E_{m_1,m_2}(\varphi,H_{\vartheta})$ yield the relation (3.22). It follows that $\varphi(z_1,z_2) \in H_{\vartheta}$ is an entire transcendental function. Hence the proof is completed.

REFERENCES

- [1] Bose, S.K. and Sharma, D., Integral functions of two complex variables, Compositio Math. 15 (1963), 210-226.
- [2] Ganti, R. and Srivastava, G.S., Approximation of entire functions of two complex variables in Banach spaces, J. Inequalities in Pure & Applied Mathematics, 7, Issue 2, (2006), 1-11.
- [3] Juneja, O.P., Kapoor, G.P. and Bajpai, S.K., On the (p,q) order and lower (p,q) order of an entire function, J. Reine Angew. Math. 282 (1976), 53-67.
- [4] Vakarchuk, S.B. and Zhir, S.I., On some problems of polynomial approximation of entire transcendental functions, Ukarainian Mathematical Journal, (54) (9) (2002), 1393-1401.