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I. Introduction
In various fields of engineering and physics, many problems that are related to linear
viscoelasticity, nonlinear elasticity have mathematical models and are described by the problems of
differential or integral equations or integrodifferential equations. Our work centers on the problems
described by the integrodifferential models. It is important to note that when we describe the
systems which are functions of space and time by partial differential equations, in some situations,
such a formulation may not accurately model the physical system because, while describing the
system as a function at a given time, it may fail to take into account the effect of past history. Neutral
differential equations arise in many areas of applied mathematics and for this reason these equations
have received much attention during the last few decades [1, 2, 3]. A good guide to the literature for
neutral functional differential equations is the book by Hale and Verduyn Lunel [4] and the references
therein. The existence of solution to evolution equations with nonlocal conditions in Banach space
was studied first by Byszewski [5, 6]. Byszewski and Lakshmikanthan [7] proved an existence and
unigueness of solutions of a nonlocal Cauchy problem in Banach spaces. Ntouyas and Tsamatos [8]
studied the existence for semilinear evolution equations with nonlocal conditions. The problem of
existence of solutions of evolution equations in Banach space has been studied by several authors [9,

10].

Measures of noncompactness are a very useful tool in many branches of mathematics. They are used in
the fixed point theory, linear operators theory, theory of differential and integral equations and others [11].
There are two measures which are the most important ones. The Kuratowski measure of noncompactness

o(X) of a bounded set X in a metric space is defined as infimum of numbers r >0 such that X can be
covered with a finite number of sets of diameter smaller than r . The Hausdorff measure of noncompactness
x(X) defined as infimum of numbers r >0 such that X can be covered with a finite number of balls of

radii smaller than I'. There exist many formulae on y(X) in various spaces [11, 14].
Let E be a Banach space and F be a subspace of E. Let y-(X), z:(X), 0c(X), o-(X)

denote Hausdorff and Kuratowski measures in spaces E,F, respectively. Then, for any bounded X — F we
have

Ze(X) < 1 (X) £ 0:(X) = 0 (X) < 2 (X).
The notion of a measure of weak compactness was introduced by De Blasi [12] and was subsequently used in
numerous branches of functional analysis and the theory of differential and integral equations. Several authors
have studied the measures of noncompactness in Banach spaces [13, 14, 15]. Motivated by [9, 11, 16, 17], in
this paper, we study the existence results for quasilinear equation represented by first-order neutral
integrodifferential equations using the semigroup theory and the measure of honcompactness.
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Il. Preliminaries
We consider the quasilinear integrodifferential equations with nonlocal condition of the form

%[x(t) +e(t, x(t), J.;k (t, s, x(s))ds)]+ A(t, x(t))x(t)

=f(t, x(t))+.[;g (t,s,x(s))ds,t [0,b], t =t,, )

X(0) + h(x) = X,, 2

where A:[0,b]x X — X are continuous functions in Banach space X , X, € X, f:[0,b]xX — X,
g:AxX — X,h:C([0,b], X) > X, e:[0,b]x X x X — X, k: Ax X — X . Here
A={(t,s):0<s<t<h}.

Let X be a Banach space with norm | - ||and denoted L([O,b], X) by the space of X -valued

Bochner integrable functions on [0,b] with the form
b
x|, = [ [x(®dt.
The Hausdorff’s measure of noncompactness ., is defined by

x(B) =inf{r >0, B can be covered by finite number of balls with radii r}, for bounded

set B in a Banach space Y .
Lemma 2.1 [11]. Let Y be a real Banach space and B,E Y be bounded, with the following

properties:
(). B isprecompact if and only if y, (B) =0.
Gi). 7, (B) = x (B) = #, (conB), where B and con B mean the closure and convex hull of
B respectively.

(ii). x,(B)< x, (E), where BC E.

(iv). y(B+E)< x,(B)+ 1 (E), where B+E ={x+y:xeB, yeE}

). x (BUE)<max{y, (B), x (E)}.

vi). %, (AB) 4] x, (B), forany 2 €R.

(vii). Ifthemap F: D(F) €Y — Z is Lipschitz continuous with constant I , then

- (FB) <ry, (B), for any bounded subset B = D(F), where Z be a Banach space.
(viii). x, (B) =inf{d, (B,E); E <Y is precompact} =inf{d, (B,E);E <Y is finite valued},
where dY (B, E) means the non-symmetric (or symmetric) Hausdorff distance between B and E in

Y

(ix). If {Wn};'fl is decreasing sequence of bounded closed nonempty subsets of Y and

limnoe 2y (W,) =0, then ﬂ;jlwn is nonempty and compact in Y.

Themap F:W Y —Y s said to be a y, -contraction if there exists a positive constant I <1 such that
¥y (F(B)) <ry, (B) for any bounded closed subset B < W, where Y is a Banach space.

Lemma 2.2 (Darbo-Sadovskii [11]). If W Y is bounded closed and convex, the continuous map
F:W — W isa y, -contraction, the map F has atleast one fixed pointin W.
We denote by y the Hausdorff’s measure of noncompactness of X and also denote y, by the

Hausdorff’s measure of noncompactness of PC([0,b], X).
Before we prove the existence results, we need the following Lemmas.
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Lemma 2.3 If W < PC([0,b], X) is bounded, then x(W(t)) < x.(W), for all te[0,b],
where W(t) ={u(t);u e W} < X. Furthermore if W is equicontinuous on [0,b], then y(W(t)) is
continuous on [0,b] and . (W) =sup{¥(W(t)),t [0,b]}.

Lemma 2.4 [18, 19]. If {u }~, —L*([0,b], X) is uniformly integrable, then the function
x({u,(t)}.-,) is measurable and

z({[;un@)ds}::l)sz [, Qu,(s)¥)ds. ®

Lemma 2.5 If W < PC([0,b], X) is bounded and equicontinuous, then (W (t)) is continuous
and

Z(j; W(s)ds) < I;;((W(s))ds, for all t <[0,b], @)
where [W(s)ds ={[ u(s)ds:u e W}.

The C, semigroup U, (t,S) is said to be equicontinuous if (t,s) —>{U,(t,s)u(s):ueB} is
equicontinuous for t > 0, for all bounded set B in X. The following lemma is obvious.

Lemma 2.6 If the evolution family {U , (t, S)}o..p is equicontinuous and 77 € L([0,b],R™), then

the set {J:Uu (t,s)u(s)ds, || u(s) | r(s), fora.e s [0,b]}, is equicontinuous for t [0, b].

We know that, for any fixed UePC([0,b], X) there exist a unique continuous function
U, :[0,b]x[0,b] — B(X) defined on [0,b]x[0,b] such that
U, (t.5) = 1 + [ /A (W)U, (w, s)dw, 5)
where B(X) denote the Banach space of bounded linear operators from X to X with the norm
| FlI=sup{l|Ful:ll ul= 1}, and I stands for the identity operatoron X, A, (t) = A(t,u(t)), we have
U,tt)=1U,ts)U,(s,r)=U,(,r), (t,s,r)e[0,b]x[0,b]x[0,b],

ou, (t,s)

P = A, (U, (t,s), for almostall t,se[0,b].

I11. The Existence of Mild Solution
Definition 3.1 A function X € PC([0,b], X) is said to be a mild solution of (1)—(2) if it
satisfies the integral equation

x(t) =U, (t,0)x, —U, (t,0)h(x) +U, (t,0)e(0, x(0),0) —e(t, x(t),jotk(t, S, x(s))ds)
+ [AGXEN, s)e(s, X(9). [k(s.7.x(x))d r)ds

+.EUX (t,s)[f (s,x(3)) +J:g (s,7,x(r))d7]ds,0<t <h.
In this paper, we denote M, :Sup{]|UX(t,S)||:(t,S) €[0,b]x[0,b]}, for all x e X. Without loss of

generality, we let X, = 0.
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Assume the following conditions:
(Hy). The evolution family {U, (t, )}y, generated by A(t, X(t)) is equicontinuous and

U, (t,s)|<M,, foraimost t,s €[0,b].
(Hp). (a). The function h:PC([0,b]x X) — X is continuous and compact.
(b). There exists N, > 0 such that || h(x) |<N,, forall uePC([0,b]; X).

(Hs). (i). The nonlinear function f :[0,b]x X — X satisfies the Caratheodory-type conditions;
thatis, f(:,X) is measurable forall xe X and f(t,) is continuous, for a.e

t e[a,b].
(ii). There exists a function & € L([0,b],R™) such that for every X € X, we have
I (t,%)] < a(t)(L+ 1)), aet <[0,b].
(iii). There exists a function m, € L([0,b],R™) such that, for every bounded D — X, we
have y(f (t,K))<m,(t) ¥(K), aet<[0,b].

(Hy). (i). The nonlinear function ¢ :[0,b]x[0,b]x X — X satisfies the Caratheodory-type
conditions; i.e., (-, X) is measurable, for all X e X and Q(t,S,") is continuous for
ae tela,b].

(ii). There exist two functions 3, € L([0,b],R") and S, eL([0,b],R™) such that for
every X € X, we have ||g(t, S, X(S))” <L @)L, (s) A+ ||X(S)||), aete[0,b].

(iii). There exists a function m_,n, € L([0,b],R™) such that, for every bounded D — X,
we have x(g(t,s,K)) <m, (t)n,(s) ¥(K), aet <[0,b].

t
Assume that the finite bound of J.Omg (s)ds is G,,.

(Hs). (i). The function € [O, b]>< X x X — X satisfies the Caratheodory-type conditions; that
is, e(-, X, Xl) is measurable, for all X, X, € X and e(t,-,-) is continuous, for a.e
t €[0,b].
(ii). There exists a function ¥ € L([0,b],R™) such that for every X, X, € X, we have
let, x, %)< 7)1+ |x]) + [ aet [0,b].
(iii). The nonlinear function (:[0,b]x[0,b]x X — X satisfies the Caratheodory-type
conditions; i.e. K(-,-,X) is measurable, forall X € X and K(t,S,-) is continuous, for a.e

t<[0,b].

(iv). There exist two functions @, € L([0,b],R") and @, € L([0,b],R™) such that for
every X € X, we have

[k (t,s,x(9))] < o, (t)ew, (3)(1+|x(5)|)), @ t €[O, b].

(v). There exists a function 77 € L([0,b],R™) such that for every X, X, € X, we have
|AC, x(®)e(t, x, x,)| < m(t)|e(t, x, x,)|, aet [0,b].

(vi). There exists a function m, € L([0,b],R™) such that, for every bounded D < X, we
have

xet,K,K))<m, () y(K)+o(K,), aet e[0,b].
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t
Assume that the finite bound of Iome (s)ds is G,.

(vii). There exists a function m,,n, €L([0,b],R™) such that for every bounded D < X, we
have

2(K(t,5,K) <m, (O, (5) 7(K), aet £[0,b].
Assume that the finite bound of Jka (s)ds is G,.

(He). Forevery t €[0,b] and there exist positive constants N, and N,, the scalar equation
t
M(E)=MoN, + 71 (1+m(s)) + My, +MCio(t)(1+m(s)) +7(t) ¥ (t)Clel (s)ds
t t
+M, [ [a(s)(1+m(s))ds +C, [ B, (s)(1+m(s))ds].

Where C, = Iﬁ(t)dt.
0

Theorem: 3.1 Assumptions (H,) —(H,) holds, then the quasilinear neutral impulsive
problem (1) — (3) has at least one mild solution.
Proof. Let M(t) be a solution of the scalar equation

MO=MN, + 71 (1+m(8)) + Mgy, + M Co(t)(1+m(s)) +7(t) (t)ClLtwl (s)ds
+M, [[ar()(1+m(s))ds +C, [ 5, (s) 1+ m(s))ds]. (6)

Let us assume that the finite bound of L:,Bz(s)ds is C,, for te[0,b]. Consider the map
F:C([0,b], X) — C([0,b], X) defined by

(F)(t) = U, (¢,0)h(x)+U. (t,0)e(0, x(0),0) —e(t, x(0). [kt x(s))ds)
+ [ A XU, s)e(s, X(s). [k(s.. x(r))dr)ds

+J;UX (t,s)[ T (s,x(3)) +Iosg (s,7,x(r))dz]ds, 0<t<b, 8)
for all x e C([0,b], X). Let us take W, ={x € C([0,b], X), || x(t) [|<m(t), for all t[0,b]}.
Then W, < C([0,b]; X) is bounded and convex. We define W, = con K(W,), where con means the
closure of the convex hull in C([0,b], X). As U, (t,s) is equicontinuous, h is compact and
W, < C([0,b], X) is bounded, due to Lemma 2.6 and using the assumptions, W, < C([0,b], X) is
bounded closed convex nonempty and equicontinuous on [0, b].
For any U € F(W,), we know

[X®)|<U, t,0)h(u)| + U, (t,0)e(0, x(0),0)| +
f
il

<MoNg +My, + 7, (1+[ X)) + J.;k(t, s, X(s))ds

e[t, x(t), [kt x(s))ds)
‘A(t, KO, (4. 9)e{t X, [k(s. 7. x|

ds

ds

U, (t,s)[f (s,x(s))+J';g(s,r,x(s))dr]
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M He(t, x(0). [k(s., X(r))dr) ds

+MI[ I f s x() s+ [ [ 9(s7,x(2)) Il duds]

<MN, +Myy, + 7, (1+ X)) + @, (0)[ @, (8)(1+ [x)ds
ML[()7(8)ds + [ (8)eo, (1) dsdr](1+ ]
M, [a(8)(1+ [x())ds +M, [ [[£,(5)5, () (+ [x(z)d uds

<MN, + 7, (1+M(8)) + My, +MCeo()(1+ M($)) + (1) ()C, [ 3, (s)dls

+M0I;[a(s)(1+ m(s))dS+Coj;ﬁ1(s)(1+ m(s))ds], for te[0,b].
=m(t).
It follows that W, < W,. We define W, = con F(W.), for n=1,2,3,---. From above we know that

{W.,}., is adecreasing sequence of bounded, closed, convex, equicontinuous on [0,b] and nonempty subsets
in C([0,b], X).

Now for n>1 and t €[0,b], W, (t) and F(W,(t)) are bounded subsets of X, hence, for any
& >0, there is a sequence {X, },-, < W, , such that (see, e.g. [7], pp.125).

2(Wo,, (0)=2(FW, (1)
<270t 4%, ()31, [ K(t,50%, (037,)ds))
2M7(t) |2 (@5 L ()i, [ k(5. 7.4%, (2) i) ) s
+2M, [ (F (5.0 ()F))ds + M, [ [ (0 (s, 74U, (D)) d s +
< 2m, (1) 7%, (O} +2m, O [ m, (5) 14X, ()}, Is
+2M (O], (8) 2%, (). s + 2 [ my ($)m, (2) 24, ()}, d ]
+2M [ M, (8) 1 ({U (8)})ds+4M, [ ['m, (), (2) r({u (1)} )dads +
< 2[m, (1) + m, ()G, + M7 ()G, 12 (W, (1)
+2M, [J.;{ZG M (8)+m; (8)}x(W,(s))ds + ZGOJ';ng (8) x(W,(s))ds]+¢

Since & > 0 is arbitrary, it follows that from the above inequality that
Z(W,,1 (1)) <2[m, (t) + m, ()G, + My (1)G, 11 (W, (1)) ®)

+2M0[£[262mk (8)+m¢ (8) +2G,n, (s)]x (W, (s))]ds, for all t <[0,b].
Because W, is decreasing for N, we have
A(t) = lim 2 (W, (1)),
forall t €[0,b]. From (8), we have o
A(t) £2[m, (t) + m, (1)G, + M7 ()G, ]A(t)
+2My[[[2G,m, (5)+ M, (s) +2G,n, (s)JA(s)ds],
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for te[0,b], which implies that A(t)=0, for all t €[0,b]. By Lemma 2.3, we know that

limn_e ¥ (W, (t)) = 0. Using Lemma 2.1 we know that W = ﬂ::an is convex compact and nonempty in

PC(]0,b], X) and F(W) < W. By the Schauder fixed point theorem, there exist at least one mild solution
U of the initial value problem (1) — (2), where X € W is a fixed point of the continuous map F.
Remark 3.2. If the functions f, g and I, are compact or Lipschitz continuous (see e.g [8, 10]),

then (H;) —(H,) is automatically satisfied.

In some of the early related results in references and above results, it is supposed that the map h is
uniformly bounded. In fact, if h is compact, then it must be bounded on bounded set. Here we give an existence

result under growth condition of f, g and I,, when h is not uniformly bounded. Precisely, we replace the
assumptions (H,)—(Hg) by

(H7). There exists a function p € L([0,b],R™) and a increasing function ¢:R"™ —R™ such
that

| £ @] < L @a(x]).
fora.e t €[0,b], forall x € C([0,b], X).

(Hg). There exist two functions L, eL([0,b],R")and L, € L([0,b],R™) and a increasing

function ¥ :R"™ — R" such that

Jatt.s. <L, @)L, () ¥().
for ae te[0,b] and for all L, € C([0,b], X). Assume that the finite bound of
j;Lg (s)ds is G,.

(Ho). There exists a function L, € L([0,b],R™) and a increasing function I':R" —R" such
that
Ject x %)< L T () + [
for ae te[0,0] and for all L, € C([0,b], X). Assume that the finite bound of

j; L,(s)ds is G

(Hio). There exist two functions L, e L([0,b],R")and L, € L([0,b],R") and a increasing
function ®:R" —R" such that

[k(t,s, %) < L () Ly (s)O(|x]),
for ae te[0,b] and for all L, € C([0,b], X). Assume that the finite bound of

[L(s)ds is G,.

Theorem: 3.2 Suppose that the assumptions (H,)—(H,) and (H,)—(H,,) are satisfied, then the

equation (1) —(2) has at least one mild solution if

lim SUp={M, [(r) + L, (O + L, )]

r—oo r
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+G,L (0() + nOM[G,T(1) + G,0(1)[ L, (5)0s]

ML, (5)d5+ G, ([ L, (9)dsTh<1, ©

where ¢(r) = sup{|| h(x) ||, [| x[l< r}.
Proof. The inequality (10) implies that there exist a constant r > O such that

Molo(r) + L (0]+ L @) (TX]) + G, L, )O(r) + ()M, [G,I(r)

+G,0(n)[. L, ()ds] + My[4(r) [[pe)ds+G,¥ ()] L, (s)ds]<r,
As in the proof of Theorem 3.1, let W, ={x € C([0,b], X), || x(t) ||< r} and

W, = con FW,. Then forany X € W,, we have

Ix(®)]| < t.0)h(x)]|+ U, (t,0)e(0, x(0),0)[ +
g
o

<My[p(n) + L 01+ L O + [L, O L 990(x)ds

e(t, x(0). [k(t.s, x(s))ds)”

ds

‘A(t, X(t)U, (t, s)e(t, X(t), J:k(s, 7,X(z))d z‘)

ds

U, (t,s)[f (s,x(s))+Eg(s,r,x(s))dr]

0 OM, [Tp ST + [L, ) L, (De(dzlds

ML (9)(x(s)ds +[ ['L, () L () P(x()|d ]
<M,[o(r) + L, )]+ L, (©)(T|X]) + GL, (1)O(X])

+nOM[G,T() + G [ L ()0(||)ds]

+ M pE)A(Ix(s)ds + G, || L, () ([x(s)])cs]
[X(®)] <Mylp(r) + L, (0] + L )X + G:L, (0O(r)

nOM[G,I(D) +G,0(] L, (5)ds]

t t =
+M[4()] ps)ds + G, ¥ ()] L, (s)ds]
<r,
for t €[0,b]. It means that W, < W,,. So we can complete the proof similarly to Theorem 3.1.

V. Application
The notion of controllability is of great importance in mathematical control theory. Many fundamental
problems of control theory such as pole-assignment, stabilizability and optimal control may be solved under the
assumption that the system is controllable. It means that it is possible to steer any initial state of the system to
any final state in some finite time using an admissible control. During the last few decades, several authors [21,
23] have discussed the existence, uniqueness, and asymptotic behavior of the solution of these systems. Apart
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from these, the study of controllability and observability properties of a system in control theory is certainly, at
present, one of the most active interdisciplinary areas of research. Control theory arises in most modern
applications. On the other hand, control theory has remained a discipline where many mathematical ideas and
methods have fused to produce a new body of important mathematics. As an application of Theorem 3.1 we

shall consider the system (1) — (2) with a control parameter such as
%[x(t) +e(t, x(t), I(: K(t,s, x(s))ds) A(t, x(t))x(t) (10)

=f(t, x(t))+Cv(t)+J:g(t, S, X(s))ds, t €[0,b], t =t,,

X(0)+h(X) = X,, (11)
where A, f, g,Q, h and Ik are as before and C is a bounded linear operator from a Banach space V into

X and the control function V € L?(J,V). The mild solution of (16)— (18) is given by

x(t) =U__(t,0)%, —U (t,0)h(x)+U_ (t,0)e(0, x(0).,0) —e(t, x(0). [kt x(s))ds)
+ [AG X, s)e(t, x(®).[k(s.7, x(e))d rjds

+J:UX(t, S)[ T (s,x(s)) +Cv(s) +Lsg (s,7,X(z))d7]ds,0<t <h.
Definition 5.1 ([22, 23]) System (10) — (11) is said to be controllable on the interval J, if for every
Xy, X, € X, there exists a control V€ L?(J,V) such that the mild solution U(-) of (10) — (11) satisfies
X(0) = X, and X(b) = x;.
To study the controllability result we need the following additional condition:
1. The linear operator W : L? (J,V) > X, defined by

Wy = jobux (b, s)Cv(s)ds,

induces an inverse operator W™ defined an L2(J,V)/kerW and there exists a positive constant
M, >0 such that HCW ’1H <M,.

Theorem: 5.1 If the assumptions (H,) — (H,,) are satisfied, then the system (10) — (11) is
controllable on J.

Proof. Using the assumption (H,;), for an arbitrary function u(-), define the control
v(t) =W [u, ~U, (b,0)x, +U, (b,0)h(x) ~U, (b,0)e(0, x(0).0)

; e(b, x(0). [ k(b.s, x(s))ds]
- [ Ab.x0)U, (b, s)e(b, x(0). [k(s. 7, x(r))dr)ds

b S
- joux(b, S)[f (s, x(s)) - jog(s, 7,x(z))dz]ds
We shall show that when using this control, the operator H: Z — Z defined by

(Hv)(t) =U,(t,0)x, —U(t,0)h(x) +U,(t,0)e(0, x(0),0) — e(t, X(t), J.;k(t, S, x(s))ds)

+ [AGXOW, s)e(t, x(®),[k(s.7, x(r))d rjds

+ J:UX (t,S)[f (s, x(s)) +CW "[u, U, (b,0)x, +U  (b,0)h(x)
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_U, (b,0)e(0, X(0),0) + e(b, x(0). [k(bss, x(s))ds)
+ [ A, x(b)U, (b, s)e(b, x(0). [k(s.7, x(r))drjds

~[U, 0.9 (5.x(5) + [ (.7, x(z))d c]ds
= Y U@L XENE) + [ 95,7, x(z))d 7]ds

0<tk <t

has a fixed point. This fixed point is, then a solution of (10) —(11). Clearly, (Hv)(b) = x(b) = X, which

means that the control V steers the system (10) — (11) from the initial state X, to the final state X, at time

b, provided we can obtain a fixed point of the nonlinear operator H. The remaining part of the proof is similar
to Theorem 3.1 and hence, it is omitted.
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