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Abstract: The paper presents the derivation a hybrid block method for the solutions of Initial Value Problems 

of Ordinary Differential Equations. This is achieved by using collocation and interpolation technique to 

contruct a self-starting method with continuous coefficients together with the additional methods from its first 

derivative which are combined to form a single block that simultaneously provide the approximate solutions for 

Initial Value Problem. The analysis of the properties of the method such as stability, consistency and 

convergence are discussed and the performance of the method is demonstrated on two test problems to show the 

accuracy and efficiency of the method. On comparison of the results obtained from numerical examples with 

some existing methods, we discovered that the method behaved favourably well. 
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I. Introduction 
The class of problems 

   ),...,'',',,()( 1 mm yyyyxfxy  

together with initial conditions 

   
tt yxy 00 )(   

where t = 0, 1 and 2 has received much attention by researchers. A lot of research have been carried out 

to solve higher order ordinary differential equations (ODEs) numerically, but by first reducing it to a system of 

first order ODEs and then solve by a method designed for a first order ODEs. The deficiencies of this approach, 

which include time wastage, computational burden and high cost of implementation are extensively discussed in 

the literature.  

Various numerical schemes for solving differential equations exist in literature. Among these are the 

Runge-kutta, Taylor's algorithm and the Linear Multistep Methods (LMMs). Owing to the suitability of LMMs 

in providing solutions to ODEs, many scholars have developed LMMs varying from discrete to continuous for 

the solution of IVPs. However, it has been reported that continuous LMMs has greater advantages over the 

discrete method in that they give better error estimation and guarantee easy appropriation of solution at all 

interior points of the integration interval. [1] and [2] considered LMMs where in [2], LMMs were proposed and 

implemented in a predictor-corrector scheme using the Taylor series algorithm to supply the starting values. 

Although, the implementation of the methods yielded good accuracy but the procedure is more costly to 

implement. Many researchers have attempted the solution of this kind of problem using LMMs without 

reduction to system of first order ODEs, (see [3], [4], [5], [6]). Conventionally, implicit LMMs, when 

implemented in the predictor-corrector mode is prone to error propagation. This disadvantage has led to the 

development of block methods from linear multistep methods. Apart from being self-starting, the method does 

not require the development of the predictors separately, and evaluates fewer functions per step. 

Due to the elegant property of Chebyshev polynomial such as equi-oscillation in its entire range of 

definition and consequent even distribution of error therein we shall employ it to develop a class of finite 

difference method which is self starting. Its mini-max property also make it desirable. 

 

II. Material and Methods 
In this section, we set out to derive the proposed continuous hybrid one step block method by 

approximating the analytical solution of  
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where f is a continuous function, with a Chebyshev polynomial in the form 
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on the partition a = x0 < x1 < ... < xn < xn+1 < ... < xN = b of the integration interval [a, b], with a 

constant step size h, given by h = xn+1 - xn;  n = 0, 1, ..., N - 1. The second derivative of (2) is given by 
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where x[a, b], the aj’s are real unknown parameters to be determined and r + s is the sum of the number of 

collocation and interpolation points. 

We shall interpolate at at least two points to be able to approximate (2) and for this purpose, we proceed by 

selecting some offstep points in such a manner that the zero-stability of the main method is guaranteed. Then (2) 

is interpolated at xn+s and its second derivative is collocated at xn+r so as to obtain a system of equations which 

will be solved by Gaussian elimination method. The resulting sa j

'
 are substituted into (2) to yield the new 

continuous method after some manipulations. Evaluating the continuous method at the desired point gives the 

main method. Other methods needed to couple with the main method are to be derived from the continuous 

method and then solve simultaneously to form the block method. 

 

2.2 Derivation of Two Offstep Points 

Here, two offstep points (TOP) are introduced. These two points are carefully selected to be 
1

3
 and 

2

3
 where 

the collocation point, r = 4 and the interpolation point, s = 2. 

Applying these in (2), we have 
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with its second derivative given by 
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Substituting (5) into (1) gives 
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Collocating (6) at x = xn+r , r = 0, 
1 2

,
3 3

, 1 and interpolating (4) at x = xn+s, s = 
1

3
 and 

2

3
 lead to a system of 

equations written in matrix form AX = B as follows: 
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Solving (7) by Gaussian elimination method yields the aj’s as follows: 
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Substituting the aj’s, j = 0(Error! Reference source not found.)5 into (4) yields the continuous hybrid one step 

method in the form of a continuous linear multistep method described by the formula 
2
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where αj’s and βj’s are continuous functions and are obtained as parameters 
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where t =   and v = x - xn. 

Evaluating (9) at x = xn and xn+1, we obtain the discrete methods from (10) as follows: 
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The block methods are derived by evaluating the first derivative of (9) in order to obtain additional 

equations needed to couple with (11) and (12). 

Differentiating (9), we obtain 
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Evaluating (14) at x = xn, xn+ 1 , xn+ 2 and xn+1, the following discrete derivative schemes are obtained. 
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Equations (11), (12) and (15) are combined and solved simultaneously to obtain the following explicit results.  
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Equation (16) recovers the dicrete counterpart when power series was used as basis function in [8]. 
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III. Numerical Examples 
We consider here two test problems for the efficiency and accuracy of the method implemented as a 

block method. The absolute errors of the test problems are compared with our earlier work. 

4.1 Problems 

Problem 1 
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IV. Results 
TABLE 1a: Showing the exact solutions and the computed results for problem 1 

X Exact Solution Two Offstep Points 

0.1 -0.105170918 -0.105170918 

0.2 -0.221402758 -0.221402759 

0.3 -0.349858807 -0.349858808 

0.4 -0.491824697 -0.491824699 

0.5 -0.64872127 -0.64872127 

0.6 -0.8221188 -0.822118804 

0.7 -1.013752707 -1.013752713 

0.8 -1.225540928 -1.225540937 

0.9 -1.459603111 -1.459603122 

1.0 -1.718281828 -1.718281844 

 

TABLE 1b: Comparison of absolute errors for Problem 1 
 X Error in [7], p=4, k=1 Error in TOP, p=4, k=1 

 0.1 0.160756E-07 0.847212855e-012 

 0.2 0.351602E-07 0.35792513310e-011 

 0.3 0.237576E-06 0.8583191935-011 

 0.4 0.2646413E-06 0.1630669488e-010 

 0.5 0.2967001E-06 0.2726645687e-010 

 0.6 0.3343905E-06 0.4205776616e-010 

 0.7 0.3784705E-06 0.6136532837e-010 

 0.8 0.4304925E-06 0.8597550005e-010 

 0.9 0.4911569E-06 0.1167900776e-009 

 1.0 0.561459E-06 0.1548418993e-009 

 

TABLE 2a: Showing the exact solutions and the computed results for problem 2 
X Offstep2 Exact 

0.1 0.095480053582243 0.095480054999222 

0.2 0.183694232119942 0.183694237374844 

0.3 0.267015712944721 0.267015723827326 

0.4 0.347498559993963 0.347498577841350 

 

TABLE 2b: Comparison of absolute errors for Problem 2 
X Error in TOP Error in [9] 

0.1 1.416978520629719e-009 3.7135900e-4 

0.2 5.254901042084370e-009 1.5836410e-3 

0.3 1.088260487280834e-008 3.4173760e-3 

0.4 1.784738623555882e-008 5.7170630e-3 
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V. Conclusion 
This paper has demonstrated the derivation of continuous two-offstep hybrid method for the direct 

integration of second order ordinary differential equations. It has been observed through comparison of the 

solutions of the selected test problems with solutions obtained in our earlier paper, [10] that increase in the 

number of offstep points leads to increase in the efficiency and accuracy of the method. Moreover, the desirable 

property of a numerical solution is to behave like the theoretical solution of the problem as this is vivid in the 

Tables shown above. In the future paper, the scope of the paper shall be extended to hybrid two step points. 
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