www.iosrjournals.org

On generalized Weyl's type theorem

A. Babbah¹, M. Zohry²

^{1,2}(University Abdelmalek Essaadi, Faculty of Sciences, Mathematics Department, BP. 2121, Tetouan, Morocco)

Abstract: It is shown that if a bounded linear operator T or its adjoint T^* has the single-valued extension property, then generalized Browder's theorem holds for f(T) for every $f \in H(\sigma(T))$. We establish the spectral theorem for the B-Weyl spectrum which generalizes [15, Theorem 2.1] and we give necessary and sufficient conditions for such operator T to obey generalized Weyl's theorem.

Keywords: Single-valued extension property, Fredholm theory, generalized Weyl's theorem, generalized Browder's theorem.

I.INTRODUCTION AND NOTATIONS

Let X denote an infinite-dimensional complex Banach space and L(X) the unital (with unit the identity operator, I, on X) Banach algebra of bounded linear operators acting on X. For an operator $T \in L(X)$ write T^* for its adjoint, N(T) for its null space, R(T) for its range, $\sigma(T)$ for its spectrum, $\sigma_{su}(T)$ for its surjective spectrum, $\sigma_a(T)$ for its approximate point spectrum, $\sigma(T)$ for its nullity and $\sigma(T)$ for its defect.

T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator if the range R(T) of T is closed and $\alpha(T) < \infty$ (resp. $\beta(T) < \infty$). A semi-Fredholm operator is an upper or a lower semi-Fredholm operator. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator and the index of T is defined by $ind(T) = \alpha(T) - \beta(T)$.

For a T -invariant closed linear subspace Y of X, let T / Y denote the operator given by the restriction of T to Y.

For a bounded linear operator T and for each integer n, define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into itself. If for some integer n the range $R(T^n)$ is closed and $T_n = T/R(T^n)$

is a Fredholm (resp. semi-Fredholm) operator, then T is called a B-Fredholm (resp. semi-B-Fredholm) operator. In this case, from [3, Proposition 2.1] T_m is a Fredholm operator and in the form of each $m \succ n$. This permits to define the index of a B-Fredholm operator T as the index of the Fredholm operator T_n where, n is any integer such that $R(T^n)$ is closed and T_n is a Fredholm operator. It is shown (see [2, Theorem 3.2]) that if S and T are two commuting B-Fredholm operators then the product ST is a B-Fredholm operator and be the B-Fredholm resolvent of T and let be the B-Fredholm spectrum of T. The class BF(X) has been studied by M. Berkani (see [3, Theorem 2.7]) where it was shown that an operator $T \in L(X)$ is a B-Fredholm operator if and only if $T = S_0 \oplus S_1$ where S_0 is a Fredholm operator and S_1 is a nilpotent one. He also proved that $\sigma_{BF}(T)$ is a closed subset of Γ contained in the spectrum Γ 0 and showed that the spectral mapping theorem holds for Γ 1, that is, Γ 2 for any complex-valued analytic function on a neighborhood of Γ 3. Theorem 3.4]). From [21] we recall that for Γ 3 the ascent Γ 4 and the descent Γ 5 are given by

And

respectively, where the infinum over the emptyset is taken to be ∞ . If a(T) and d(T) are both finite the and $R(T^p)$ is closed.

An operator $T \in L(X)$ is called semi-regular if R(T) is a closed space and N(T) = R(T) for every $n \in N$. The semi-regular resolvent set is defined by that R(T) = R(T) is an open subset of R(T) = R(T). The semi-B-Fredholm resolvent set of R(T) = R(T) is an open subset of R(T) = R(T).

We recall that an operator $T \in L(X)$ has the single-valued extension property, abbreviated SVEP, if, for every open set $U \subseteq C$, the only analytic solution $f: U \longrightarrow X$ of the equation $f: U \longrightarrow X$ of the equatio

Proposition 1 Let $T \in L(X)$.

- (i) If T has the SVEP then S
- (ii) If T^* has the SVEP then S^*

For our investigations we need the following result.

Proposition 2 Let $T \in L(X)$.

- (i) If T has the SVEP then $ind(T) \le 0$ for every $\lambda \in \rho_{SRF}(T)$.
- (ii) If T^* has the SVEP then $ind(T) \ge 0$ for every $\lambda \in \rho_{SP}(T)$.

Proof. (i) Let $\lambda \in \mathcal{P}_{\mathbf{MF}}(T)$, then there exists an integer p such that the operator

is semi-Fredholm.

From the Kato decomposition, there exists $\delta \succ 0$ such that

A TO THE PERSON LAND

Since T has the single-valued extension property, Proposition 1 implies that

Therefore one verify that

holding for O LANG

Thus, by the continuity of the index, $ind(T) \leq 0$.

(ii) This is included in part (i) since **included**.

An operator $T \in L(X)$ is said to be Weyl if it is Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. The essentiel spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by

 $\sigma_b(T) = \{ \lambda \in \square : T - \lambda \text{ is not Browder} \}.$

It is well known that

An operator $T \in L(X)$ is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by

For a subset K of C, we shall write $\operatorname{iso}(K)$ for its isolated points. A complex number λ_0 is said to be Riesz point of T in L(X) if λ examples $\mathcal{L}(X)$ and the spectral projection corresponding to the set $\{\lambda_0\}$ has finite-dimensional range. The set of all Riesz points of T will be denoted by $\Pi_0(T)$. It is known that if $T \in L(X)$ and $\lambda \in \sigma(T)$ then $\lambda \in \Pi_0(T)$ if and only if $T - \lambda I$ is Fredholm of finite ascent and descent (see [19]). Consequently

Let $\Pi(T)$ denote the set of all poles of the resolvent of T and $E_0(T)$ denote the set

Berkani [2, Theorem 4.5] showed that where E(T) is the set of all eigenvalues of T which are isolated in $\sigma(T)$. This result gives a generalization of the classical Weyl's theorem

II.SVEP AND GENERALIZED WEYL'S THEOREM

The concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. From [12] we recall that, for an algebra A with unit 1 we say that an element $a \in A$ is Drazin invertible of degre k if there is an element b of A such that

In the case of A=L(X), it is well known that T is Drazin invertible if and only if it has a finite ascent and descent which is also equivalent to the fact that $T=T_0\oplus T_1$ where T_0 is an invertible operator and T_1 is a nilpotent one, see for instance [12, Proposition 6] and [7, Corollary 2.2].

Recall that X where X where X is the class of all compact operators acting on X.

It was proved in [2, Theorem 4.3] that for $T \in L(X)$, Let $T \in L(X)$, we will say that :

- (i) T satisfies Weyl's theorem if
- (ii) T satisfies generalized Weyl's theorem if
- (iii) T satisfies Browder's theorem if
- (iv) T satisfies generalized Browder's theorem if

Recall from [5] that if $T \in L(X)$ satisfies generalized Weyl's theorem then it also satisfies Weyl's theorem and if T satisfies generalized Browder's theorem then it satisfies Browder's theorem.

We now turn to an another extension of the characterization of operators obeying Weyl's theorem ([1, Theorem4]).

Theorem 3 [4, Theorem 2.5] If $T \in L(X)$ then we have

- (ii) Figure 1 if and only if $\mathcal{F}_{\mathcal{A}}(I) = \mathcal{F}_{\mathcal{A}}(I)$.

From this theorem we obtain immediately the following corollary.

Corollary 4 Let $T \in L(X)$, then T satisfies generalized Weyl's theorem if and only if A(X) = A(X).

In [15, Theorem 2.1] it is proved that if either an operator T on an infinite dimensional separable Hilbert space or its Hilbert adjoint has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. Using a standard argument and the Riesz functional calculus, we obtain the same result for operators on infinite dimensional Banach spaces with a simple and short proof.

Proposition 5 Let $T \in L(X)$, then for every $f \in H(C(T))$.

Proof. Let $\lambda \in \mathcal{F}(T)$, then $f(T) - \lambda I$ is not a B-Weyl's operator. As

there exists $\mu \in \sigma(T)$ such that $\lambda = f(\mu)$.

We have where g is a non vanishing analytic

function on $\sigma(T)$. So

Since f(T)- λI is not a B-Weyl operator, and

there exists $\beta \in \mathcal{F}_{BW}(T)$. such that $T - \beta I$ is not a B-Weyl operator and since $f(\beta) = \lambda$ we get $\beta \in \mathcal{F}_{BW}(T)$.

The opposite inclusion does not hold in general. Furthermore if f is injective on $\sigma_{BW}(T)$, the last inclusion becomes an equality.

The proof of the next result is similar to that one involving $\sigma_w(T)$ (see [14, Theorem 3]).

Theorem 6 Let $T \in L(X)$, if $f \in H(C(T))$ is injective on $\sigma_{BW}(T)$ then

AND KAD

Let BW(X) be the class of $T \in L(X)$ such that **int(T—X)** $\leq C_{\text{for all}} \lambda \in \rho_{BF}(T)_{\text{or}}$ **int(T—X)** $\geq C_{\text{for all}} \lambda \in \rho_{BF}(T)_{\text{or}}$

We recall that hyponormals operators on a Hilbert space H lie in BW(X).

The following result shows that, for operators lying in the class BW(X), the spectral mapping theorem for complex polynomials implies the spectral mapping one for complex-valued analytic functions.

Theorem 7 For $T \in L(X)$ verifying the single-valued extension property, the following assertions are equivalent:

- (i) $T \in BW(X)$.
- (ii) $f \in Ho(T)$).
- (iii) **Fig. 10** for all complex polynomial p.

Proof. $(i) = \Rightarrow (ii)$ [22, Théorème 2.2.4] implies that

 $for all f \in \mathcal{H}(T)$

(ii)= ⇒(iii) Clear.

 $(iii) = \Rightarrow (i)$ Assume that $T \not\in BW(X)$. Then there are λ, μ in $\rho_{RE}(T)$ such that

 $ind(T - \lambda I) > 0$ and $ind(T - \lambda I) < 0$. If we consider **ind(T - \lambda I)** \Rightarrow k and

 $-iv(T-\mu)$ and the polynomial μ then p(T) is

a B-Fredholm operator with thus Off thus Off (p(T)). Since

Proposition 8 If $T \cap T^*$ has the single-valued extension property, then

 $f \in \mathcal{M}$ for any $f \in \mathcal{H}(c(T))$.

Proof. Let $f \in \mathcal{H}(T)$). If T or T^* has the SVEP, by Proposition 2, T lies in BW(X) and Theorem 7 concludes the proof.

Let $T \in L(X)$, the analytical core of T is the subspace, K(T), defined below

The quasi-nilpotent part of T is the subspace

Both subspaces, will be of particular importance in what follows, they have been introduced and studied by Mbekhta (see [8–10]). In general neither $H_0(T)$ nor K(T) is closed. The following facts are easy to verify;

for every $m \in \square$; if $x \in X$, then $x \in H_0(T)$ if and only if $Tx \in H_0(T)$. If T is invertible then $H_0(T) = \{0\}$.

Theorem 9 [8, Theorem 1.6] Let $T \in L(X)$, the following conditions are equivalent.

- (i) λ is an isolated point of $\sigma(T)$.
- (ii) where HT and the direct sum is topological.

Moreover, λ is a pole of the resolvent, $\rho(T)$, of T of order p if and only if

ISTANTANA KEAD READ.

Our next goal is to show that generalized Browder's theorem is satisfied for f(T) whenever T or T^* has the single-valued extension property and f in $H(\sigma(T))$. The same result was showed in [6, Theorem 1.5] for the generalized a-Browder theorem. To settle our result, we use a characterization of the pole of the resolvent in terms of ascent and descent given in [13].

Remark. It is shown in [18, Theorem 4.18] that if T verifie the single-valued extension property, then for any analytical function on an open neighbourhood of $\sigma(T)$, f(T) verifie the single-valued extension property.

Theorem 10 If $T \in L(X)$ or its adjoint has the single-valued extension property, then generalized Browder's theorem holds for f(T) for every $f \in L(X)$.

Proof. Assume that $\mathcal{L}(T)$, so $T - \lambda I$ is B-Weyl, hence B-Fredholm of index 0 and by [17, Theorem 1.82], $T - \lambda I$ is Kato type. Since T or T^* verifie SVEP, [17, Corollary 2.49] implies that $\mathcal{L}(T)$ then $\mathcal{L}(T)$ is is isolated in $\mathcal{L}(T)$ and by [4, Theorem 2.3], $T - \lambda I$ is B-Weyl, that is $\mathcal{L}(T)$ and $\mathcal{L}(T)$ and $\mathcal{L}(T)$ is B-Weyl, that is $\mathcal{L}(T)$ is B-Weyl, that is $\mathcal{L}(T)$ and $\mathcal{L}(T)$ is B-Weyl, that is $\mathcal{L}(T)$ and $\mathcal{L}(T)$ is B-Weyl, that is $\mathcal{L}(T)$ is B-Weyl,

From this theorem we obtain immediately the following corollary.

Corollary 11 If $T \in L(X)$ or its adjoint T^* has the SVEP, then

- (i) Generalized-Weyl's theorem holds for T if and only if $\Gamma(T) = E(T)$.
- (ii) Generalized-Weyl's theorem holds for T^* if and only if T^* .

The next result rewrite some results due to C. Schmoeger [13] as follows.

Proposition 12 Let $T \in L(X)$, the following conditions are equivalent

- $(i) \lambda \in \Pi(T)$.
- (ii) $\lambda \in E(T)$ and there exists an integer $p \ge 1$ for which
- (iii) $\lambda \in E(T)$ and there exists an integer $p \ge 1$ for which
- (iv) $\lambda \in E(T)$ and $T \lambda I$ is of finite descent.

Proof. Without loss of generality we can assume that $\lambda = 0$.

(i) \Rightarrow (ii) Since 0 is a pole of the resolvent of T of order P, it is an eigenvalue of T and an isolated point of the spectrum of T. Hence $0 \in E(T)$. Finally by Theorem 9

(ii) \Rightarrow (iii) If there exists $p \ge 1$ such that $P(T) \Rightarrow P(T)$ and $0 \in E(T)$ from [8, Théorème 1.6] we have

Then one obtain and sinc H(T)=N(P), and sinc H(T)=N(P), follows that K(T)=R(P).

(iii) \Rightarrow (iv) If there exists $p \ge 1$ such that (p) = (p), since (p) = (p) it follows that

and $d(T) \prec \infty$

(iv) \Rightarrow (i) Suppose that $0 \in E(T)$ and $d(T) \prec \infty$. Since 0 is isolated in $\sigma(T)$, by [13, Theorem 4] and $H_0(T) \neq \{0\}$ is closed. Hence by [13, Theorem 2(b)] T has the SVEP at 0 and finally [13, Theorem 5] gives $0 \in \Pi(T)$.

The following theorem follows immediately from Corollary 11 and Proposition 12.

Theorem 13 Let $T \in L(X)$ such that T or its adjoint T^* has the single-valued extension property then the following conditions are equivalent:

- (i) Generalized Weyl's theorem holds for T.
- (ii) $\forall \lambda \in E(T)$ there exists $p \ge 1$ for which
- (iii) $\forall \lambda \in E(T)$ there exists $p \ge 1$ for which $E(T, \lambda)$.
- (iv) $\forall \lambda \in E(T)$, $T \lambda I$ is of finite descent.

REFERENCES

Journal Papers:

- [1]. B. A. Barnes, Riesz points and Weyl's theorem, Integr. Equ. Oper. Theory, 34 (1999), 187-196.
- [2]. M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130 (6) (2001), 1717-1723.
- [3]. M. Berkani, On a class of quasi-Fredholm operators, Integ. Equ. Oper. theory, 34 (1999), 244-249.
- [4]. M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal., 272 (2002), 596-603.
- [5]. M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 (2003), 359-376.
- [6]. M. Lahrouz and M. Zohry, Weyl type Theorems and the Approximate Point Spectrum, Irish Math. Soc. Bulletin, 55 (2006), 197-214.
- 7]. D. C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann., 184 (1970), 197-214.
- [8]. M. Mbekhta, Généralisations de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J., 29 (1987), 159-175.
- [9]. M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged), 59 (1994), 525-543.
- [10]. M. Mbekhta and A. Ouahab, Perturbation des opérateurs s-réguliers, Topicsin operator theory, operator algebras and applications (Timi, soara, 1994), 239-249, Rom. Acad., Bucharest, 1995.
- [11]. M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math., 163 (2004), 85-101.
- [12]. S. Roch, B. Silbermann, Continuity of generalized inverses in Banach algebras, Studia. Math., 136 (3) (1999), 197-227.
- [13]. C. Schmoeger, On isolated points of the spectrum of bounded linear operators, Proc. Amer. Math. Soc., 117 (1993), 715-719.

- C. Schmoeger, On operators T such that Weyl's theorem holds for f(T), Extracta Mathematicae, vol. 13, Num. 1 (1998), 27-33.
- [15]. H. Zguiti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316, (2006), 373-381.

Books:

- [16]. P. Aiena Fredholm and Local Spectral Theory with Applications to Multipliers Kluwer Academic Publishers, 2004.
- P. Aiena, Semi-Fredholm Operators Perturbation Theory and Localized SVEP M'erida, Venezuela, 2 al 7 de Septiembre de 2007. [17].
- [18]. S.R. Caradus, W.E. Pfaffenberger, B. Yood Calkin Algebras and Algebras of Operators on Banach Spaces Marcel Dekker New
- [19].
- H. Heuser, Funktionalanalysis 2nd ed., Teubner Stuttgart, 1986.
 A. Taylor and D.lay, Introduction to functional analysis 2nd ed. John Wiley & sons, 1980. [20].

Theses:

A. Arroud, Théorème généralisé de Weyl pour les opérateurs hyponormaux et les multiplicateurs, Thèse de Doctorat d'Etat, [21]. Université Mohammed V Agdal, Rabat, 2319, 2006.