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Abstract: It is shown that if a bounded linear operator T or its adjoint T* has the single-valued extension
property, then generalized Browder’s theorem holds for f(T) for every f € H(o(T)). We establish the spectral
theorem for the B-Weyl spectrum which generalizes [15, Theorem 2.1] and we give necessary and sufficient
conditions for such operator T to obey generalized Weyl’s theorem.
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I.INTRODUCTION AND NOTATIONS

Let X denote an infinite-dimensional complex Banach space and L(X) the unital (with unit the
identity operator, |, on X) Banach algebra of bounded linear operators acting on X . For an operator

T eL(X) write T* for its adjoint, N(T) for its null space, R(T) for its range, o(T)for its spectrum, Oy, (T)

for its surjective spectrum, O, (T) for its approximate point spectrum, a(T) for its nullity and B(T) for its

defect.
T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator if the range R(T) of T is closed and

a(T) <o (resp. A(T) < o). A semi-Fredholm operator is an upper or a lower semi-Fredholm operator. If
both@(T) and ﬂ(T) are finite, then T is called a Fredholm operator and the index of T is defined by
ind(T) = a(T) - A(T).

For a T -invariant closed linear subspace Y of X | let T/Y denote the operator given by the
restrictionof Tto Y.

For a bounded linear operator T and for each integer n, define T, to be the restriction of T to R(T")

viewed as a map from R(T") into itself. If for some integer n the range R(T") is closed and T, =

T/RT")

is a Fredholm (resp. semi-Fredholm) operator, then T is called a B-Fredholm (resp. semi-B-Fredholm) operator.
In this case, from [3, Proposition 2.1] Tp is a Fredholm operator and WG )=®®WT) for each M >N
This permits to define the index of a B-Fredholm operator T as the index of the Fredholm operator T, where, n

is any integer such that R(T") is closed and T, is a Fredholm operator. It is shown (see [2, Theorem 3.2]) that
if S and T are two commuting B-Fredholm operators then the product ST is a B-Fredholm operator and

rafED—asaS 8T |« BF(X) pe the class of all B-Fredholm operators and
m be the B-Fredholm resolvent of T and let Mbe
the B-Fredholm spectrum of T. The class BF(X) has been studied by M. Berkani (see [3, Theorem 2.7])
where it was shown that an operator T elL(X) is a B-Fredholm operator if and only if T=8 &5 where
So is a Fredholm operator and Siisa nilpotent one. He also proved that Ogr (T) is a closed subset of [

contained in the spectrum O (T) and showed that the spectral mapping theorem holds for Ogge (T) that is,

Wfor any complex-valued analytic function on a neighborhood of o(T) (see [3,

Theorem 3.4]). From [21] we recall that for T el(X) , the ascent a(T) and the descent d(T) are given by
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respectively, where the infinum over the emptyset is taken to be oo. If a(T)and d(T) are both finite the

AD=AD—, SPAPTIELI)and R(T ") is closed.

An operator T € L(X) is called semi-regular if R(T) is a closed space and NI T for every n € N.

The semi-regular resolvent set is defined by Wm note

that S—M is an open subset of [] . The semi-B-Fredholm resolvent set of T is given by
We recall that an operator T € L(X) has the single-valued extension property, abbreviated SVEP, if, for

every open set U € C, the only analytic solution f:U—-X of the equation A—=DTFD=E5or all

A €U s the zero function on U. We will denote by H(S(T)) the set of all complex-valued functions which

are analytic on an open set containing o(T). Asa consequence of [9, Théoreme2.7], we obtain the following
result.

Proposition 1 Let T € L(X).

(i) 1f T has the SVEP then S—teef D=1
(i) If T* has the SVEP then S—¥eef D= (.

For our investigations we need the following result.
Proposition 2 Let T € L(X).

(i) If T has the SVEP then INd(T) <O for every Aee-(T).
(i) If T* has the SVEP then INA(T) =Ofor every A=2=(T).

Proof. (i) Let ﬂe,ch:(T), then there exists an integer p such that the operator

CAHAEDBDBD R CEBECEN ;s oni-Fredholm.

From the Kato decomposition, there exists & > 0 such that

[ a— —_— — T _

Since T has the single-valued extension property, Proposition 1 implies that

=2 ED—SECERE Thcrefore one verify that

NS A€ i o G DaAaiiic D _Jda
holding for O—%£=A=A

Thus, by the continuity of the index, INA(T) =<0,

(ii) This is included in part (i) since ¥ @{T )—=wa{D).

An operator T eL(X) is said to be Weyl if it is Fredholm of index zero and Browder if it is
Fredholm of finite ascent and descent. The essentiel spectrum O (T) the Weyl spectrum UW(T) and the
Browder spectrum Oy, (T) of T are defined by
o,(T)={A €l : T — 1 is not Browder}.

Itis well known that <D ED D=

An operator T eL(X)is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl spectrum Opgy (T) of
T is defined by
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=3 = Sr==p == . o —— |
For a subset K of C, we shall write iso(K) for its isolated points. A complex number A is said to be
Riesz point of T in L(X) if %EE(C(-D) and the spectral projection corresponding to the set {%} has
finite-dimensional range. The set of all Riesz points of T will be denoted by Ho(T). It is known that if
T el(X) and A€0(T) then AT H(T) ifand only if T —Al is Fredholm of finite ascent and descent
(see [19]). Consequently m

Let TT(T) denote the set of all poles of the resolvent of T and E, (T) denote the set

—— @2 E=B— o anomal operator T acting on a Hilbert space H,
Berkani [2, Theorem 4.5] showed that T D—<GDN\ECD ywhere E(T) is the set of all eigenvalues

of T which are isolated in (T) . This result gives a generalization of the classical Weyl’s theorem

K D—=CD\ELT.

I1.SVEP AND GENERALIZED WEYL’S THEOREM

The concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. From [12]
we recall that, for an algebra A with unit 1 we say that an element a € A is Drazin invertible of degre k if there

is an element b of A such that ek=vek=kdak¥ks . The drazin spectrum of a € A is defined by
W In the case of A=L(X) it is well known that

T is Drazin invertible if and only if it has a finite ascent and descent which is also equivalent to the fact that

T=T, DT, where Ty is an invertible operator and T isa nilpotent one, see for instance [12, Proposition 6]
and [7, Corollary 2.2].

Recall that W where K(X) is the class of all compact operators

actingon X .

It was proved in [2, Theorem 4.3] that for T € L(X), =X I3 >

Let T €L(X), we will say that :

() T satisfies Weyl’s theorem if < D—<GDNELT.

(i) T satisfies generalized Weyl’s theorem if M
(iii) T satisfies Browder’s theorem if KD=—=<GD\I LT

(iv) T satisfies generalized Browder’s theorem if W

Recall from [5] that if T el(X) satisfies generalized Weyl’s theorem then it also satisfies Weyl’s
theorem and if T satisfies generalized Browder’s theorem then it satisfies Browder’s theorem.

We now turn to an another extension of the characterization of operators obeying Weyl’s theorem
([1, Theorem4]).

Theorem 3 [4, Theorem 2.5] If T €L(X) then we have
() FED—GDNECD if and only it (D=L {T).
(i) ZED—GONEED if and only it EAD=(D.

From this theorem we obtain immediately the following corollary.

Corollary 4 Let T el (X) , then T satisfies generalized Weyl’s theorem if

and only if ZF&D=GDN\L@ ang M =I{D).
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In [15, Theorem 2.1] it is proved that if either an operator T on an infinite dimensional separable Hilbert space
or its Hilbert adjoint has the single-valued extension property, then the spectral mapping theorem holds for B-
Weyl spectrum. Using a standard argument and the Riesz functional calculus, we obtain the same result for

operators on infinite dimensional Banach spaces with a simple and short proof.

Proposition 5 Let T €L(X), then FCICID—HGFED forevery T =HAM)).

Proof. Let ASEALFCD), then T(T)—Al isnota B-Weyl’s operator. As

I W=D there exists ££€0(T) suchthat 1= TF(4)).
We have —m@ where g is a non vanishing analytic
function on o(T). so S - _

since F(T)-Al isnota B-Weyl operator, and

L - 2 e 3= el = )

there exists /@#ﬁ“:ﬁa suchthat T — Bl isnota B-Weyl operator and since f(B=1

we get Leag (D).

The opposite inclusion does not hold in general. Furthermore if f is injective on Opgw (T) the last

inclusion becomes an equality.

The proof of the next result is similar to that one involving O, (T) (see [14, Theorem 3]).

Theorem 6 Let T €L(X) if T AT s injective on Oy (T) then
FIDD—Hz(D.

Let BW(X) pe the class of T €L(X) such that W T—=A)=L orall A==(Nor

AT = forall Acr=(T).
We recall that hyponormals operators on a Hilbert space H lie in BW(X).

The following result shows that, for operators lying in the class BW(X) the spectral mapping
theorem for complex polynomials implies the spectral mapping one for complex-valued analytic functions.

Theorem 7 For T €L(X) verifying the single-valued extension property, the
following assertions are equivalent :

) TeBAMX).
(i) TGFEDD—FICW for all T SHHXT)).
(iii) Wfor all complex polynomial p. _

Proof. (i)==(ii) [22, Théoréme 2.2.4] implies that T(GFEDD—3CICD

forall T &),

(ii)==(iii) Clear.

(iii)==(i) Assume that T ZBWX). Then there are 4,4 in Pee (T) such that

ind(T — A1) >0 and ind (T — A1) < 0. If we consider FEXT—A)=Kand
—aT— D 3nd the polynomial O=E—=-C—LF, then P(T) is

a B-Fredholm operator with rafO@D)—H<IACD-€ OQ‘CE/\(F(T)) Since

Aeag,(T) we get SR - contradiction.
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Proposition 8 If T o T hasthe single-valued extension property, then

TG DDz Mfor any T D).

Proof. Let T &HcXT)). 1f T or T™* has the SVEP, by Proposition 2, T lies in
BW!(X) and Theorem 7 concludes the proof.

Let T €L(X) , the analytical core of T is the subspace, K(T) , defined below

Both subspaces, will be of particular importance in what follows, they have been introduced and studied by
Mbekhta (see [8-10]). In general neither H, (T) nor K(T) is closed. The following facts are easy to verify;

T DI B W rorevery Mell ;if Xe X, then X€HL(T) if and only if
TXEH)(T). If T is invertible then H;(T)Z{O}

Theorem 9 [8, Theorem 1.6] Let Te L(X) the following conditions are equivalent.
(i) A is an isolated point of o(T).

(i) S><IAW DT R \here FHIT—D== and the direct

sum is topological.
Moreover, 4 isa pole of the resolvent, po(T) ,of T of order p if and only if

HEA—D-—P&—Da1 FKO—D-Fa—D.
Our next goal is to show that generalized Browder’s theorem is satisfied for f (T ) whenever T or

T * has the single-valued extension property and f in H(o(T)) . The same result was showed in [6, Theorem
1.5] for the generalized a-Browder theorem. To settle our result, we use a characterization of the pole
of the resolvent in terms of ascent and descent given in [13].

Remark. It is shown in [18, Theorem 4.18] that if T verifie the single-valued extension property, then for any
analytical function on an open neighbourhood of o(T) , f(T) verifie the single-valued extension property.

Theorem 10 If T €L(X) orits adjoint has the single-valued extension property,
then generalized Browder’s theorem holds for f(T) for every f eHALD).

Proof. Assume that ~A=E€IDNGALTD) so T — A1 is B-Weyl, hence B-Fredholm of index 0

and by [17, Theorem 1.82], T — Al is Kato type. Since T OF T ™ verifie SVEP, [17, Corollary 2.49] implies
that CEI—D—OF—=ID—<. Then A€ IT) and <CGONLAD—=zxzE L. Conversely,
if A€II(T) then 4 isisolated in o(T) and by [4, Theorem 2.3], T — A1 is B-Weyl, that is A&Z(T)
and m Now if T el—(dT)), by the last remark and the fact that
fCF5=[fCD]", (D ot (T verifie SVEP and consequently we obtain

= U@ o & S L)

From this theorem we obtain immediately the following corollary.
Corollary 11 If T eL(X) orits adjoint T * has the SVEP, then
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(i) Generalized-Weyl’s theorem holds for T if and only if =,
(ii) Generalized-Weyl’s theorem holds for T * if and only if T @PY=ELT™),

The next result rewrite some results due to C. Schmoeger [13] as follows.

Proposition 12 Let T € L(X), the following conditions are equivalent

) A€TKT).

(i) A €E(T) and there exists an integer P =1 for which FfIIFD=PI—IY.
(i) A €E(T) and there exists an integer P =1 for which IHI—ID—F&I—I).

(iv) A€E(T) and T — Al is of finite descent.

Proof. Without loss of generality we can assume that 4 =0
(i)=(ii) Since Oisa pole of the resolvent of T of order P itisan eigenvalue of T and

an isolated point of the spectrum of T . Hence O € E(T) . Finally by Theorem 9 FHI(D=IN{T)".
(ii) =(iii) If there exists P =1 such that FI(D=NLT™) and 0 E(T) from[8, Théoréme 1.6] we have

>HIDIBLT. Then one obtain  IEID—IRESEF—TREEH and sinc H(D=T),

TACD)=D) follows that K(N=RT").

(iiii) =(iv) I there exists P =1 such that K{)=RT"), since TATTD=FLT] it follows that
IS <D €SI ¢ d(T) <=,

(iv)=(i) Suppose that 0 E(T) and d(T) =<0, since 0 isisolated in (T), by [13, Theorem 4]
><=I—OCD@(D and H)(T) ;t{O} is closed. Hence by [13, Theorem 2(b)] T has the SVEP at 0

and finally [13, Theorem 5] gives O0eIN(T).

The following theorem follows immediately from Corollary 11 and Proposition 12.

Theorem 13 Let T €L(X) suchthat T orits adjoint T * has the single-valued extension property
then the following conditions are equivalent:
(i) Generalized Weyl’s theorem holds for T.

(i) VAEE(T) there exists P =1 for which FfIFD=PO—I¥.

(i) VAEKT) there exists P =1 for which HI—D—F&—I).
(v) VAEE(T) T — Al is of finite descent.
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