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Abstract: It is shown that if a bounded linear operator T or its adjoint T* has the single-valued extension 

property, then generalized Browder’s theorem holds for f(T) for every f ∈ H(σ(T)). We establish the spectral 

theorem for the B-Weyl spectrum which generalizes [15, Theorem 2.1] and we give necessary and sufficient 

conditions for such operator T to obey generalized Weyl’s theorem. 
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I.INTRODUCTION AND NOTATIONS 

Let X  denote an infinite-dimensional complex Banach space and ( )L X  the unital (with unit the 

identity operator, I , on X ) Banach algebra of bounded linear operators acting on X . For an operator 

( )T L X  write T* for its adjoint, N(T) for its null space, R(T) for its range, σ(T)for its spectrum,  su T  

for its surjective spectrum,  a T  for its approximate point spectrum, ( )T  for its nullity and ( )T  for its 

defect. 

 T is called an upper  semi-Fredholm (resp. a lower semi-Fredholm) operator if the range R(T) of T is closed and 

( )T  < ∞ (resp. ( )T  < ∞). A semi-Fredholm operator is an upper or a lower semi-Fredholm operator. If 

both ( )T  and ( )T  are finite, then T is called a  Fredholm operator and the index of T is defined by  

( )ind T  = ( )T  − ( )T . 

  For a T -invariant closed linear subspace Y  of X , let /T Y  denote the operator given by the 

restriction of T to Y.  

  For a bounded linear operator T and for each integer n, define nT  to be the restriction of T to ( )nR T  

viewed as a map from ( )nR T  into itself. If for some integer n the range ( )nR T  is closed and nT  = 

/ ( )nT R T  

 is a Fredholm (resp. semi-Fredholm) operator, then T is called a B-Fredholm (resp. semi-B-Fredholm) operator.  

In this case, from [3, Proposition 2.1] mT  is a Fredholm operator and ( ) ( )m nindT indT  for each m n . 

This permits to define the index of a B-Fredholm operator T as the index of the Fredholm operator nT  where, n 

is any integer such that ( )nR T  is closed and nT  is a Fredholm operator. It is shown (see [2, Theorem 3.2]) that 

if S  and T  are two commuting B-Fredholm operators then the product ST  is a B-Fredholm operator and 

( ) () ()indSTindSindT  . Let ( )BF X  be the class of all B-Fredholm operators and 

(){ : ()}BFT TIBFX    be the B-Fredholm  resolvent of T and let () \ ()BF BFT T  be 

the B-Fredholm spectrum of T. The class ( )BF X  has been studied by M. Berkani (see [3, Theorem 2.7]) 

where it was shown that an operator ( )T L X  is a B-Fredholm operator if and only if 0 1T S S   where 

0S  is a Fredholm operator and  1S is a nilpotent one. He also proved that ( )BF T  is a closed subset of   

contained in the spectrum ( )T   and showed that the spectral mapping theorem holds for ( )BF T , that is, 

( ()) (())BF BFf T fT  for any complex-valued analytic function on a neighborhood of ( )T  (see [3, 

Theorem 3.4]). From [21] we recall that for  ( )T L X , the ascent ( )a T  and the descent ( )d T  are given by 

   
1()inf{0:() ( )}n naT nNTNT   

And 

                 
1()inf{0:() ( )}n ndT nRTRT   
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respectively, where the infinum over the emptyset is taken to be ∞. If ( )a T and ( )d T are both finite the     

( ) ( )aT dT p  , ( ) ( )p pXNT RT  and ( )pR T is closed. 

An operator T ∈ L(X) is called semi-regular if R(T) is a closed space and ( ) ( )nNT RT  for every n ∈ N. 

The semi-regular resolvent set is defined by  sregT {:  is semiregular}TI   we note 

that    *sregTsregT    is an open subset of  . The semi-B-Fredholm resolvent set of T is given by 

(){:  is semi B-Fredholm}SBFT TI   . 

We recall that an operator T ∈ L(X) has the single-valued extension property, abbreviated SVEP, if, for 

every open set U ⊆ C, the only analytic solution :f U X  of the equation ( ) ( ) 0T I f   for all 

U  is the zero function on U. We will denote by ( ( ))H T the set of all complex-valued functions which 

are analytic on an open set containing ( )T .  As a consequence of [9, Théorème2.7], we obtain the following 

result. 

  

Proposition 1 Let T ∈ L(X). 

(i) If T  has the SVEP then  s regT ()aT  . 

(ii) If *T  has the SVEP then  s regT ()suT  .  

 

For our investigations we need the following result. 

Proposition 2 Let T ∈ L(X). 

(i) If T  has the SVEP then ( ) 0ind T   for every ( )SBF T  . 

(ii) If *T  has the SVEP then ( ) 0ind T  for every ( )SBF T  . 

 

Proof. (i) Let ( )SBF T  , then there exists an integer p such that the operator  

(T/R(TI))I  (TI)/R(TI)p p    is semi-Fredholm. 

From the Kato decomposition, there exists 0   such that 

{ : 0 | |}sreg(T/R(TI))p    . 

Since T has the single-valued extension property, Proposition 1 implies that 

s-reg(T/R(T -I)) = (T/R(T -I))p p

a . Therefore one verify that 

N((T/R(TI)) I)0p   and so ind(TI)ind((T/R(TI))I)0p  , 

 holding for 0 | | .     

Thus, by the continuity of the index, ( ) 0ind T  . 

(ii) This is included in part (i) since 
*( ) ()indT indT .  

 

An operator ( )T L X  is said to be Weyl if it is Fredholm of index zero and  Browder if it is 

Fredholm of finite ascent and descent. The essentiel spectrum ( )e T , the Weyl spectrum ( )w T  and the 

Browder spectrum ( )b T  of T are defined by  

(){:  is not Fredholm}eT T  ; 

(){ :  is not Weyl}wT T   ; 

( ) { :  is not Browder}b T T     . 

It is well known that () () () ()e w bT T T T    . 

 

An operator ( )T L X is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl spectrum ( )BW T  of 

T is defined by 
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(){:  is not B-Weyl}BWT T   . 

For a subset K of C, we shall write iso(K) for its isolated points. A complex number 0  is said to be 

Riesz point of T  in ( )L X  if 0 ( ( ))iso T   and the spectral projection corresponding to the set 0{ }  has 

finite-dimensional range. The set of all Riesz points of T will be denoted by 0( )T . It is known that if 

( )T L X  and ( )T   then 0( )T  if and only if T I  is Fredholm  of finite ascent and descent 

(see [19]). Consequently  0() ()\ ()bT T T   . 

Let ( )T denote the set of all poles of the resolvent of  T  and 0( )E T  denote the set 

 {: ((),0( )}isoT TI   . For a normal operator T acting on a Hilbert space H, 

 Berkani [2, Theorem 4.5] showed that () ()\ ()BWT TET   where  ( )E T  is the set of all eigenvalues  

of T which are isolated in ( )T . This result gives a generalization of the classical Weyl’s  theorem  

0() ()\ ()wT TET  . 

  
II.SVEP AND GENERALIZED WEYL’S THEOREM 

 

The concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. From [12] 

we recall that, for an algebra A with unit 1 we say that an element a ∈ A is Drazin invertible of degre k if there 

is an element b of A such that , ,k kabaababbabba    . The drazin spectrum  of a ∈ A is defined by 

 a { : a1 is not Drazin invertible}.D   In the case of ( )A L X , it is well known that 

T is Drazin invertible if and only if it has a finite ascent and descent which is also equivalent to the fact that 

0 1T T T   where 0T  is an invertible operator and 1T  is a nilpotent one, see for instance [12, Proposition 6] 

and [7, Corollary 2.2].  

Recall that () {( ): ()}wT TKKX   where ( )X  is the class of all compact operators 

acting on X . 

 It was proved in [2, Theorem 4.3] that for   T ∈ L(X), () {( ): ()}BWT TFFFX  . 

Let ( )T L X , we will say that : 

(i)  T  satisfies Weyl’s theorem if 0() ()\ ()wT TET  . 

(ii) T  satisfies generalized Weyl’s theorem if () ()\ ()BWT TET  . 

(iii) T satisfies Browder’s theorem if 0() ()\ ()wT T T   . 

(iv) T satisfies generalized Browder’s theorem if () ()\ ()BWT T T   . 

        Recall from [5] that if ( )T L X  satisfies generalized Weyl’s theorem then it also satisfies Weyl’s 

theorem and if T satisfies generalized Browder’s theorem  then it satisfies Browder’s theorem. 

 

We now turn to an another extension of the characterization of operators  obeying Weyl’s theorem 

 ([1, Theorem4]). 

 

Theorem 3  [4, Theorem 2.5] If  ( )T L X  then we have 

(i) () ()\ ()BWT TET   if and only if ( ) ( )ET T . 

(ii) () ()\ ()BWT TET   if and only if ( ) ( )BW DT T  . 

 

From this theorem we obtain immediately the following corollary. 

 

Corollary 4  Let ( )T L X , then T satisfies generalized Weyl’s theorem if 

and only if () ()\ ()BWT T T    and  ( ) ( )ET T .  
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In [15, Theorem 2.1] it is proved that if either an operator T on an infinite dimensional separable Hilbert space 

or its Hilbert adjoint  has the single-valued extension property, then the spectral mapping theorem holds for B-

Weyl spectrum. Using a standard argument and the Riesz functional calculus, we obtain the same result for 

operators on infinite dimensional Banach spaces with a simple and short proof. 

 

Proposition 5  Let ( )T L X , then (()) ( ())BW BWfT f T   for every ( ( ))f H T . 

 

Proof.  Let ( ( ))BW f T  , then ( )f T I  is not a B-Weyl’s operator. As 

(()) (()) (())BWfT fTf T    , there exists ( )T   such that ( )f  . 

We have 
1

1f(z)-f() = (z-)(z-)···(z-)g(z)nmmm

n   where g is a non vanishing analytic  

function on ( )T . So 
1

1()-()  (-)(-)···(-)()()-nmmm

nfTfITITITIgTfTI    . 

Since ( )-f T I  is not a B-Weyl operator, and   

 1 1(())  ()() ()n nindfTfImindTImindTImindTI  , 

there exists 1 n{, , , }   ・・・  such that T I  is not a B-Weyl operator  and since ( )f     

we get ( )BW T  .  

The opposite inclusion does not hold in general. Furthermore if f is injective on ( )BW T , the last 

inclusion becomes an equality. 

The proof of the next result is similar to that one involving ( )w T  (see [14, Theorem 3]). 

 

Theorem 6  Let ( )T L X , if ( ( ))f H T  is injective on ( )BW T  then 

(()) ( ())BW BWfT f T  . 

 

      Let ( )BW X  be the class of ( )T L X  such that ( ) 0indT I   for all ( )BF T  or  

( ) 0indT I   for all ( )BF T  .  

            We recall that hyponormals operators on a Hilbert space H lie in ( )BW X . 

The following result shows that, for operators lying in the class ( )BW X , the spectral mapping 

theorem  for complex polynomials implies the spectral mapping one for complex-valued analytic functions. 

 

Theorem 7  For ( )T L X  verifying the single-valued extension property, the 

following assertions are equivalent : 

(i) ( )T BWX . 

(ii) ( ()) (())BW BWf T fT   for all ( ( ))f H T . 

(iii) ( ()) (())BW BWp T pT   for all complex polynomial p. _ 

 

Proof.  (i)=⇒(ii) [22,Théorème 2.2.4] implies that ( ()) (())BW BWf T fT   

for all ( ( ))f H T . 

(ii)=⇒(iii) Clear. 

(iii)=⇒(i) Assume that ( )T BWX . Then there are ,   in ( )BF T  such that 

( ) 0ind T I   and ( ) 0ind T I  . If we consider ( )indT I k   and 

( )indT I l    and the polynomial () ( )( )l kpt t t    , then ( )p T  is  

a B-Fredholm operator with (()) ()0indpT lkkl thus 0 ( ( ))BW pT . Since 

( )BW T   we get 0()( ()) (())BW BWp p T pT    a contradiction.  
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Proposition 8  If 
* or     T T has the single-valued extension property, then 

( ()) (())BW BWf T fT  for any ( ( ))f H T . 

 

Proof.  Let ( ( ))f H T . If  or *T T  has the SVEP, by Proposition 2, T lies in 

BW(X) and Theorem 7 concludes the proof.  

 

Let ( )T L X , the analytical core of T is the subspace, ( )K T , defined below 

 01{:,0:,    0}.n

n nnnn
xXxcxxTxxandxcxforalln  

The quasi-nilpotent part of T is the subspace 


1

0  :{  : lim  0}.nn

n
HTxX Tx


  

 

Both subspaces, will be of particular importance in what follows, they have been introduced and studied by 

Mbekhta (see [8–10]). In general neither  0H T  nor ( )K T  is closed. The following facts are easy to verify; 

0(()) (),()mTKTKTKTHT   for every m ; if x X , then  0x H T  if and only if 

  0Tx H T . If T is invertible then   0 0H T  . 

 

Theorem 9  [8, Theorem 1.6] Let ( )T L X , the following conditions are equivalent. 

(i)   is an isolated point of ( )T . 

(ii) 0( ) ( )XHTI KTI   , where 0( ) 0HT I   and the direct 

sum is topological. 

Moreover,   is a pole of the resolvent, ( )T , of T  of order p if and only if 

0( ) ( )pHTI NT I    and ( ) ( )pKT I RT I    .  

Our next goal is to show that generalized Browder’s theorem is satisfied for  f T whenever T  or 

*T  has the single-valued extension property and f in ( ( ))H T . The same result was showed in [6, Theorem 

1.5] for the generalized a-Browder theorem. To settle our result, we use a characterization of the pole 

of the resolvent in terms of ascent and descent given in [13]. 

 

Remark.  It is shown in [18, Theorem 4.18] that if T  verifie the single-valued  extension property, then for any 

analytical function on an open neighbourhood of ( )T , ( )f T  verifie the single-valued extension property. 

 

Theorem 10  If ( )T L X  or its adjoint has the single-valued extension property, 

 then generalized Browder’s theorem holds for ( )f T  for every ( ( ))f H T . 

 

Proof.  Assume that ( )\ ( )BWT T  , so  T I is B-Weyl, hence B-Fredholm of index 0 

 and by [17, Theorem 1.82], T I  is Kato type. Since  or *T T  verifie  SVEP, [17, Corollary 2.49] implies 

that ( ) ( )qTI pTI   .  Then ( )T  and ()\ () ()BWT T T  .  Conversely,  

if ( )T   then   is isolated in ( )T  and by [4, Theorem 2.3], T I  is B-Weyl,  that is ( )BW T   

and ()\ () ()BWT T T  . Now if ( ( ))f H T , by the last remark and the fact that 

 (*) ( )*fT fT , ( ) or ( *)f T f T  verifie SVEP and consequently we obtain 

(()) (())\(())BWfT fT fT   . 

 

From this theorem we obtain immediately the following corollary. 

Corollary 11  If ( )T L X  or its adjoint *T  has the SVEP, then 
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(i) Generalized-Weyl’s theorem holds for T   if and only if ( ) ( )T ET  . 

(ii) Generalized-Weyl’s theorem holds for *T  if and only if ( *) ( *)T ET  . 

 

The next result  rewrite some results due to C. Schmoeger [13] as follows. 

 

Proposition 12  Let T ∈ L(X), the following conditions are equivalent 

(i) ( )T . 

(ii) ( )E T  and there exists an integer 1p   for which 0( ) ( )pHT I NT I    . 

(iii) ( )E T  and there exists an integer 1p   for which ( ) ( )pKT I RT I    . 

(iv) ( )E T  and T I  is of finite descent. 

 

Proof. Without loss of generality we can assume that 0  . 

(i)⇒(ii) Since 0  is a pole of the resolvent of T  of order p , it is an eigenvalue of T  and  

an isolated point of the spectrum of T . Hence 0 ( )E T . Finally by Theorem 9 0( ) ( )pHT NT  . 

(ii)⇒(iii) If there exists 1p   such that 0( ) ( )pHT NT  and 0 ( )E T  from[8, Théorème 1.6] we have 

0() ()XHT KT  . Then one obtain 0() (()) (())p p pRTTHTTKT    and sinc 0( ) ( )pHT NT , 

( ( )) ( )TKT KT  follows that  ( ) ( )pKT RT . 

(iii)⇒(iv) If there exists 1p   such that ( ) ( )pKT RT , since ( ( )) ( )TKT KT  it follows that 
1()(())(())()()p p pRTTRTTKTKTRT    and ( )d T  . 

(iv)⇒(i) Suppose that 0 ( )E T  and ( )d T  . Since 0  is isolated in ( )T ,  by [13, Theorem 4] 

 0() ()XHT KT   and 0( ) 0H T   is closed. Hence by [13, Theorem 2(b)] T  has the SVEP at 0 

 and finally [13, Theorem 5] gives 0 ( )T . 

 

The following theorem follows immediately from Corollary 11 and Proposition 12. 

 

Theorem 13 Let ( )T L X  such that T  or its adjoint *T  has the single-valued extension property 

 then the following conditions are equivalent: 

(i) Generalized Weyl’s theorem holds for  T . 

(ii) ( )ET   there exists 1p   for which 0( ) ( )pHT I NT I    . 

(iii) ( )ET   there exists 1p   for which ( ) ( )pKT I RT I    . 

(iv) ( )ET  , T I  is of finite descent.  
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