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Abstract: An asymptotic analysis of an unsteady hydromagnetic boundary layer flow of an incompressible 

viscous conducting fluid with uniform distribution of dust particle bounded by semi-infinite plate in the presence 

of exponential decaying pressure gradient is investigated. The exact solutions of the boundary layer equations 

are obtained by asymptotic behaviour of Laplace transform treatment. The structure of velocity distribution is 

investigated and the effect of various physical parameters likes magnetic parameter, Ekman parameter and Hall 

current parameter on velocities of both fluid and dust phase are depicted graphically. 
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I. Introduction 
A number of industrially important fluids such as molten plastics, polymers, pulps and foods exhibit 

non-Newtonian fluid behavior (Nakayama [9]). Due to the growing use of these non-Newtonian materials in 

various manufacturing and processing industries, considerable efforts have been directed towards understanding 

their flow characteristics. The magnetohydrodynamic under the influence of viscous forces taking Hall current 

into an account is important in MHD power generation, cooling of nuclear reactors and in several astrophysical 

situations. The theory of rotating fluids is highly important due to its occurrence in various natural phenomena 

and for its applications in various technological situations which are directly governed by the action of Coriolis 

force. The broad subjects of Oceanography, Meteorology, Atmospheric science and Limnology all contain some 

important and essential features of rotating fluids.  

The fluid flow problems in rotating medium have attracted many scholars and there appeared a number 

of studies in literature viz. Tiwari and Kamal Singh [1] have obtained solution for an asymptotic analysis of an 

unsteady hydromagnetic boundary layer flow generated impulsively in compressible viscous conducting fluid 

with uniform distribution of dust particle bounded by semi-infinite plate. Prasada Rao and Krishna [2] studied 

the Hall Effect on unsteady hydromagnetic flow. Debnath. [3] has discussed effect of hall current on unsteady 

hydromagnetic flow past a porous plate in a rotating fluid system. Kanch and Jana [5] have studied Hall effects 

on unsteady hydromagnetic flow past a rotating disk are investigated when the fluid at infinity rotates about 

non-coincident axes. Saffman [6] has initiated and investigated the effect of dusty particles on the stability of the 

laminar flow of an incompressible fluid with constant mass concentration of dust particles. Michael and Miller 

[11] have discussed the motion of dusty gas occupying the semi infinite space above a rigid plane boundary. 

Ghosh, Anwar Beg and Zueco [12] have studied the hydromagnetic natural convection boundary layer flow past 

an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction effects. 

 The present paper aims at studying the effect of Hall current on hydromagnetic flow on an oscillating 

plate in a rotating dusty fluid under varying time dependent pressure gradient. Laplace Transform technique is 

employed to obtain the solution. But its exact inversion would be extremely difficult, so the asymptotic behavior 

of the solution has been analyzed for both small and large time to highlight the transient approach to the steady 

flow and other physical process involved in it. For the obtained solution the effect of physical parameter like 

magnetic parameter, Ekman parameter and Hall current parameter are studied. 

 

II. Mathematical Formulation 
Consider an unsteady flow induced in a semi-infinite plate of an electrically conducting incompressible 

viscous fluid with uniform distribution of dust particles bounded by an infinite plate at 0z . A uniform 

magnetic field B0
is acting normal to plate. The fluid as well as the plate is in a state of solid body rotation 

with constant angular velocity    about the z -axis normal to the plate and additionally, non-torsional 

oscillation of frequency 1  is imposed on the plate in its own plane. 
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An unsteady hydromagnetic dusty fluid flow in a rotating co-ordinate system is governed by the 

following equations of motion and continuity [6]: 

 

For fluid phase: 
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For dust phase: 
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we have the following nomenclature: 

),,( 321 uuuu  and ),,( 321 vvvv    are the velocity of fluid and dust phase respectively, p pressure field 

including the centrifugal term, J electric current density, B total magnetic field, N number density of 

dust particles, m mass of the dust particle, K Stokes-co-efficient of resistance,  density,  kinematic 

viscosity of the fluid, and 0 magnetic permeability, t time. 

Assuming that the magnetic Reynolds number to be small and neglect the induced magnetic field in 

comparison with the applied magnetic field. The generalized Ohm’s law, in the absence of the electric field is 
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where eee pe,,,, 
 
and en

 
are respectively the cyclotron frequency of electrons, electron collision time, 

electrical conductivity, electron charge, electron pressure and the number density of the electron. The ion-slip 

and thermoelectric effects are not included in equation (2.5). Further, it is assumed that )1(Oee   and 

1ee , where i  and i  
are cyclotron frequency and collision time for ions respectively. 

 

Assume that the velocity field depends on z  and t  only, so that 

 

)],(),,(),,([),( 321 tzutzutzutzu                                                 (2.6) 

)],(),,(),,([),( 321 tzvtzvtzvtzv                                                    (2.7) 

 

For the present problem 

0),(,0),( 33  tzvtzu    and    0NN  (constant).                          (2.8) 

Since it is assumed that, the pressure gradient varying exponentially is impressed on the system for  0t , we 

can write 

tep 



 1

1
                                                                                           (2.9) 

Using the equations (2.6) and (2.7) in the equations of motion (2.1) and (2.3) one can get, 
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where  


0mN
l   (mass concentration)  and  

k

m
  (relaxation time). 

Introducing the notation 
21 uiup   and 

21 vivq   in equations (2.10) to (2.13) then they can 

be written as 
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In view of the imposed oscillations on the plate and consider no-slip boundary condition at the plate 

and no disturbance at infinity are as 
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where A and B are complex constants so that ),( tzp  and ),( tzq  become real on the plate. 

The initial conditions of the problem are taken as 

0),(),(  tzqtzp      at 0t   for all .z                                                            (2.19) 

 

III. Solution Of The Problem 
To make the above system dimensionless, introduce the following non-dimensional variables 
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Using the above non-dimensional variables and parameter in equations (2.14) and (2.15) and the 

boundary and initial conditions (2.16)-(2.19), can be obtain
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To solve initial value problem, introduce the Laplace transforms of ),( tzp  and ),( tzq respectively 

as. 
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On applying the Laplace transforms, to the equations (3.1) and (3.6) one can obtain the solutions for 

),( szp  and ),( szq as 

 

)(

1

)(

111
*

0

*  





















 

sk
e

skis

A

Us

p

U
p kz

,                                              (3.8) 

 











































 

)(

1

)(

1

22

211
*

0

*  sk
e

skiEsE
e

is

B

Us

U

U
q kzkz

   (3.9) 

 

3.1. Solutions for Small Times 

 The nature of the flow fields ),( tzp  and ),( tzq for small times can be determined by the asymptotic 

behavior of their Laplace transforms for the large value of s  and are given by 
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Taking inverse Laplace transforms to equations (3.10) and (3.11) one can get 
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From the above solution one can say that immediately after the pulsatile motion is imposed on the 

plate, an unsteady boundary layer flow builds up in the vicinity of the plate. Further the solution consists of 

Stokes layer of thickness of order



and the Rayleigh layer   order t . Also one can observe that the 

solution is remains unaffected by the dusty parameter as well as rotation and magnetic term. Similar discussion 

is true for ),( tzq  also. 

 

3.2. Solutions for large Times. Solutions of ),( tzp and ),( tzq
 
can be determined by the asymptotic behavior 

of their Laplace transforms for the small value of s are given by 
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Taking inverse Laplace transforms to equations (3.12) and (3.13) we get 
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IV. Results and Discussion 
The thickness of the boundary layer changes with the Ekman number, magnetic parameter and Hall 

current parameter. In fact, the boundary layer thickness increases with increase in Hall current parameter. 

Similar prediction for Hall current effect is also made by Debnath [3] and R. Tiwari and Kamal Singh [1]. The 

effect of Ekman number, magnetic parameter and Hall current parameter on fluid and dust velocities are 

depicted graphically verses z . 

 
Figure 1: Effect of Ekman number on fluid and dust velocity for small times. 
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Figure 4: Effect of time on fluid and dust velocity for large times 

 
Figure 5: Effect of Hall current parameter on fluid and dust velocity for large times. 

 

Figure 1 and 2 depict the velocity profile for fluid and dust versus z , for different values of Ekman 

number E . We infer from these figures that the fluid and dust velocities decrease with the increasing in Ekman 

number for both small and large times. 

The velocity of fluid and dust remains unaffected by magnetic parameter and Hall parameter in small 

times solution. But in large times both fluid and dust velocity is effected by the magnetic parameter and Hall 

parameter. 

 



Effect of Hall Current on Hydromagnetic Boundary Layer in Rotating Dusty Fluid with Exponential  

www.iosrjournals.org                                                    31 | Page 

Here the effect of increasing values of a magnetic parameter M is to decrease the fluid and dust 

velocity. As M increases, the Lorentz force increases and it leads to enhanced deceleration of the flow, which 

is as in figure 3. 

Figures 4 reveals that the fluid and dust velocity decrease with increase in the time. It is interesting to 

note that the thickness of boundary decreases with increasing time. 

Figures 5 show the effect on velocities of both fluid and dust phase. From these figures one can observe 

that the fluid and dust velocity decreases with increase in Hall current parameter m . i.e one can find the 

increase in the boundary layer thickness. Similar prediction for Hall current effect is also made by Debnath and 

others [3]. 

 

V. Conclusions 
In this paper a mathematical analysis has been carried out on momentum characteristics in an 

incompressible viscous unsteady hydromagnetic boundary layer in rotating dusty fluid in the presence of hall 

current and time dependent pressure gradient. The governing equations are solved by applying the asymptotic 

behaviour of Laplace transform treatment. The effect of various physical parameter like Ekman number E , 

magnetic parameter M , Hall current parameter m and time t  are examined. Some of the important findings of 

our analysis obtained by the graphical representation are listed below: 

 The solution remains unaffected by magnetic parameter and Hall current parameter in small times where as 

these effect for large times. 

 The effect of magnetic parameter   and hall current parameter   is to decrease the fluid and particle 

velocity. 

 The effect of Ekman number   is to decrease the fluid and dust partical velocity. 

 The effect of time is to decrease the both fluid and dust velocity. 
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