
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN:2319-765X. Volume 10, Issue 2 Ver. VI (Mar-Apr. 2014), PP 25-37
www.iosrjournals.org

www.iosrjournals.org 25 | Page

Constructing of an Artificial Neural Networks to Minimize Total

Completion Time and Total Tardiness

Tariq Salih Abdul-Razaq
1
 , Faez Hassan Ali

2

(1)Mathematics Department, College of Sciences / University of Al-Mustansiriya, Iraq.
(2)Mathematics Department, College of Sciences / University of Al-Mustansiriya, Iraq.

Abstract: This paper presents an approach to schedule n jobs with processing times and due dates on a single

machine based on Artificial Neural Network. The purpose of this paper to find a schedule that minimize a

function of the sum of completion time and sum of tardiness (i,e to minimize the multiple objective functions

(Ci,Ti)). Neural network technique was be found to be effective and used to select the best efficient and
optimal schedule which minimizes the sum of completion time and sum of tardiness.

Keywords: Back Propagation, Multiple Objective Functions, Neural network, Particle Swarm Optimization.

I. Introduction
Various applications, such as communications, routing, industrial control, and production planning

employ scheduling concepts. Most problems in these applications are confirmed to be NP-complete or

combinatorial problems. The machine scheduling problem is to find the optimal processing order of these jobs

on each machine to minimize the given objective function. [1].

Human beings are constantly thinking since ages about the reasons for human capabilities and

incapabilities. Successful attempts have been made to design and develop systems that emulate human

capabilities or help overcome human incapabilities. A number of mechanisms which seems to enable human

brain to handle various problems. These mechanisms include association, generalization and self-organization.

A Neural Network (NN) is not programmed to solve a problem-instead, it learns to solve a problem [2].

In 1994, Willems and Rooda [3] looked at first formulating a job shop scheduling problem as an

integer programming problem, and using a NN to solve the resultant integer programming problem.

Foo and Takefuji, 1998, employed integer linear programming NNs to minimizing the total starting
times of all jobs with a precedence constraint [4].

In 2001, Chen and Huang [1] investigate the employs of the competitive Hopfield NN to resolve a

multiprocessor problem with no process migration, time constraints (execution time and deadline), and limited

resources.

In 2002, Hamad et al [5], present an approach for scheduling under a common due date on static single

machine problem based on artificial NN. The objective is to minimize the total earliness and the total tardiness

cost.

In 2013 paper of Muralidhar and Alwarsamy [6] considers the problem of scheduling jobs on parallel

machines with the combined objective to minimize the makespan, total tardiness and total earliness using NN

technique.

In this paper, first we will compute the input units of NN then initialize the weights connected between the

nodes of NN which is learned by BP and PSO for minimize the multiple objective functions (Ci,Ti)) and

single objective function (Ci+Ti)) then compare the learning results obtained from the learning process of NN
finally, evaluate which is better in such scheduling problem employing the precedence rule concept.

Most of real world decision problems involve multiple and conflicting objectives that need to be tackled

while respecting the various constraints. In multi-objective problems, there may not exist one solution, which is

best w.r.t all objectives. There exists a set of solutions, which are better than the other solutions in the search

space when all the objectives are considered but are inferior to the solutions in one or more objectives and these

solutions are called non-dominated solutions. In multi-objective optimization, the optimal solution is generally

called Pareto optimal solution [7].

Scheduling problem with multiple objective can be formulated as follows: minimize

F(s)=(f1(s),(f2(s),…,fk(s)) s.t. sS where s is a solution, S is the set of feasible solutions, k is number of
objectives in the problem, F(s) is the image of s in the k-objective space and each fi(s), i=1,…,k represents one

minimization objective.

The more common notations which used in scheduling are:

n : number of jobs

pi : Processing time of job i

di : Due date of job i

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 26 | Page

Ci : Completion time of job i

Ti : the Tardiness of job i

SPT : Shortest Processing Time

EDD : Earliest Due Date

MSP : Machine Scheduling Problem

MOF : Multi-Objective Function

BAB : Branch and Bound

II. Problem Formulation
The problem of scheduling N={1,2,…,n} the set of n jobs which are processed on a single machine to

minimize the multi-criteria may be stated as follows. Each job iN has is to be processed on a single machine
which can handle only one job at a time, job i has a processing time pi and due date di, all jobs are available for

processing at a time zero. If a schedule =(1,2,…,n) is given, then the earliest completion time 



i

1j

ji
pC for

each job i can be computed and consequently the tardiness of job i Ti=max{Ci-di,0} is easy to compute. Our

objective is to find a schedule S (where S is the set of all feasible schedules) that minimizes the multicriteria

(Ci,Ti) for the 1//(Ci,Ti) problem. This problem belongs to simultaneous optimization and written as:

Min { Ci , Ti }
Subject to

Ci  pi, i=1,2,…,n.

Ti  Ci-di, i=1,2,…,n. …(P1)

Ti  0, i=1,2,…,n.

It's clear that there are two special cases for the problem (P1). The 1st one is:

1//Lex(Ci,Ti) problem. The 2nd one is 1//Ci+Ti problem which can be written as:

Min { Ci + Ti }
Subject to

Ci  pi, i=1,2,…,n.

Ti  Ci-di, i=1,2,…,n. …(P2)

Ti  0, i=1,2,…,n.

The aim for the problem (P2) is to find a processing order of the jobs on a single machine to minimize the

sum of total completion times and the total tardiness, which is a single object and can be minimized by BAB

method.

III. Dominance Rules (DR)
Reducing the current sequence is done by using several DR's. DR's usually specify whether a node can be

eliminated before its lower bound (LB) is calculated. Clearly, dominance rules are particularly useful when a

node can be eliminated which has a LB that is less than the optimum solution. The DR's are also used within the

BAB procedure to cut nodes that are dominated by others. These improvements lead to very large decrease in

the number of nodes to obtain the optimal solution.

Emmons [8] has introduced essential conditions to find an optimal solution of Ti in a single machine
problem after proving some theorems.

Theorem (1) (Emmon's) [8]: For the 1/ /Ti problem, if pipj and didj then there exists an optimal sequencing
in which job i sequencing before job j.

Definition (1) [9]: A feasible schedule  is Pareto optimal (PO), or non-dominated (efficient) w.r.t. the

performance criteria f and g if there is no feasible schedule  such that both f()f() and g()g(), where at
least one of the inequalities is strict.

3.1 Digraph Representation
Definition (2) [10]: A graph (G) is a finite set of points, called vertices or nodes (V), together with a finite set

of edges, each of which joins a pair of vertices. An edge joining a vertex to itself is called a loop.
Definition (3) [10]: If G is a graph that has n vertices, then the matrix A(G), whose i, j

th
 element is 1 if there is

at least one edge between Vi and Vj and zero otherwise, is called the adjacency matrix of G.

Definition (4) [10]: A directed graph or a digraph is a finite set of points, called vertices or nodes (V), together

with a finite set of directed edges, each of which joins a ordered pair of distinct vertices.

Remark (1):

 A digraph G contains no loops.

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 27 | Page

 There are no multiple edges.

 The directed edge ViVj is different from VjVi.

 A(G) of G of a digraph need not be symmetric.

Example (1):

Fig. (1) shows digraph (G) consists of 5 nodes:

Figure (1) 5-nodes digraph (G).

The adjacency matrix A(G) of G is:

























01100

00100

00000

11100

11110

V

V

V

V

V

)G(A

VVVVV

5

4

3

2

1

54321

Notice that the up-diagonal elements of A(G) are the binary complement of down- diagonal elements of

A(G).

Definition (5) [10]: In digraph G with n vertices, for every pair of inidviduals Vi, Vj, either Vi dominates Vj or

Vj dominates Vi, but not both. Then G is complete digraph and often called dominated digraphs.

Theorem (2) [10]: Let A(G) be the adjancacy matrix of digraph G and let the rth power of A(G) be

Br:]b[B)]G(A[)r(

ijr

r  .

Then the i, jth element of Br,
)r(

ij
b , is the number of ways in which Vi, has access to Vj in r stages.

3.2 Adjancancy Matrix of Dominated Scheduling Sequences
Form Emmon's Theorem [8], we can find an optimal sequence for 1//Ti problem, where the DR's are act

here. Let us denote the number of dominated jobs by N(d) and the number of non-dominated jobs by N(nd).

Example (2)

In Table (1), for the following 5 jobs we can conclude the following DR:

Table (1) DR for example of 5 jobs for Nnd=3.

Ji pi di Nd=7 Dominated jobs (Digraph G) Nondom. Jobs

1 2 3 12

13

14

15

23

24

43

2  5

3  5

4  5

2 3 6

3 4 9

4 3 7

5 2 11

The adjancancy matrix A(G) of grpah G is:

























0aaa0

a0100

a0000

a1100

11110

J

J

J

J

J

)G(A

JJJJJ

453525

45

35

25

5

4

3

2

1

54321

Remark (2)

 The element i,jth is 1 if Ji dominated Jj, otherwise it's 0.

 The element i,jth is assigned to aij since we have no information about the precedessor between Ji and Jj (non-

dominated jobs), therfore, the element j,ith aji= ija .

From the above remark, A(G) can obtained as follows:













jobsatedmindononforaaor,a

jiorJproceednotJif,0

JproceedJif,1

]a[)G(A

jiijij

ji

ji

ij
 ...(1)

1 2 4 3

5

V5 V3 V4 V2 V1

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 28 | Page

3.3 Test the Subjection of A(G) to DR

Now we attempt to determine weither that A(G) is subject to DR or not? First we arise A(G) to power k=n,

let B=Ak(G) if B=O (where O is nn zero matrix) then A(G) is subject to DR and it's a legal matrix, then we can

find the corresponding sequence , otherwise, if B=A
k
(G)O, kN, then the sequence  is illegal, has local

loop and not subject to DR.

For instance, recall example (2), if the vector (a25,a35,a45)=(1,1,1), then A1(G) will be:

























00000

10100

10000

11100

11110

J

J

J

J

J

)G(A

JJJJJ

5

4

3

2

1

1

54321

The sequence 1 which can be obtained from A1(G) is 1=(1,2,4,3,5) which is subject to DR shown in Table
(1). We notice that A1

5(G)=O (zero matrix), but it's not for A1
i(G), i=1,2,3,4. In general, An(G)=O for adjacency

matrix subject to DR.

For another instance, if the vector (a25,a35,a45)=(1,1,0), then A2(G) will be:

























01000

00100

10000

11100

11110

J

J

J

J

J

)G(A

JJJJJ

5

4

3

2

1

2

54321

For A2(G), the corresponding sequence 2 which can be obtained from A2(G) is not illegle since it has the

local loop J5J4J3J5, and this not allowed, generally, in combintorial problems. To do more test, we notice:

O

00100

10000

01000

11100

22200

J

J

J

J

J

)G(A)G(A

JJJJJ

5

4

3

2

1

5

2

2

2

54321



























This mean Ai
2(G)=Ai+3

2(G) O, for i=2,3,4,..., and this loop will be continue. In general Ak(G)O the

sequence 2 has local loop, kN.

So we suggest an algorithm to find out that the sequence  (or A(G)) is subject to the DR. This algorithm is
called Subjection Test (ST) Algorithm.

Algorithm ST(A(G))=Boolean

Step(1): READ an nn matrix A(G). { A(G) adjancancy matrix }

 COMPUTE  from A(G).
Step(2): COMPUTE B = [A(G)]n.

Step(3): IF B = O THEN  is subject to DR, TF=True.

 ELSE  is not subject to DR, TF=False.
 END {ENDIF}
Step(4): STOP.

Remark (3):

From example (2), notice that we can examine Nnd=23=8 states instead of 5! states to find number of

effecient sequences for problem (P1). In this mannar we can find an algorithm to find number of effecient

sequences for problem (P1) based on dominiance rule, we called it Some Effecient Sequences of (P1) using

Dominiance Rule (SESDR) algorithm.

SESDR Algorithm

Step(1): READ n-Jobs Problem Data . { pi and di }

Step(2): COMPUTE dominance rule D(k,1)=i, D(k,2)=j. {Emmon's Theorem}

 COMPUTE non-dominance rule ND(k,1)=i, D(k,2)=j.

Step(3): CONSTRUCT adjancancy matrix A=[aij]. {equation (1) }

 K=2N(nd), C=.
Step(4): FOR i=1:K

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 29 | Page

 S=binary(i-1). {length(S)=N(nd)}

 FOR j=1:N(nd)

 Ai(ND(k,1),ND(k,2))=S(j), Ai(ND(k,2),ND(k,1))=S(j).
 END {ENDFOR j}

 CALL ST(Ai) algorithm. { subjection test for A }

 IF ST(Ai)=True THEN COMPUTE i, C = C U { i }.
 ELSE ignore A.

 END. {ENDFOR i }

Step(5): FIND Set of effeceint sequences E={ i1, i2,..., ik} from dom. set C.
Step(6): STOP.

Example (3):

Recall example (2), the set of effecient sequences for problem (P1) is:

ES = {(1,5,2,4,3):(37,9), (1,2,5,4,3):(38,8), (1,2,4,5,3):(39,6)}.

Table (2) shows the results of applying SESDR algorithm on n=5 for problem (P1).

Table (2) the results of applying SESDR algorithm on n=5 for problem (P1).

i Binary Sequence  MOF Subjection test decision

0 000 1 5 2 4 3 (37,9)* True

1 001 Has local loop --------- False

2 010 Has local loop --------- False

3 011 Has local loop --------- False

4 100 1 2 5 4 3 (38, 8) True

5 101 1 2 4 5 3 (39,6) True

6 110 Has local loop --------- False

7 111 1 2 4 3 5 (41,7) True

The shaded cells represent efficient points and the MOF with * sign is SPT sequence.

IV. Artificial Neural Networks (ANN)
Artificial neural networks (ANN), or simply called neural networks, refer to the various mathematical

models of human brain functions such as perception, computation and memory. It is a fascinating scientific
challenge of our time to understand how the human brain works. Modeling NNs facilitates us in investigating

the information processing occurred in brain in a mathematical or computational manner [11].

Feed-Forward Neural Networks: Feed-forward NN (FNN), also referred to as multilayer perceptrons

(MLPs), has drawn great interests over the last two decades for its distinction as a universal function

approximator.

FNN features a supervised training with a highly popular algorithm known as the Error Back-

Propagation (EBP) algorithm [11].

Let us consider elementary feedforward architecture of m neurons receiving n inputs. Its output and input

vectors are, respectively

o = [ol,o2,...,om]
t
, x = [x1,x2,...,xn]

t
 …(2)

Weight wij connects the ith neuron with the jth input. The double subscript convention used for weights in
this paper is such that the 1st and 2nd subscript denotes the index of the destination and source nodes,

respectively. We thus can write the activation value for the ith neuron as:





n

1j

jiji xwnet , i = 1,2,...,m …(3)

The following nonlinear transformation [Equation (3)] involving the activation function f(neti), for i =

1,2,..., m, completes the processing of x. The transformation, performed by each of the m neurons in the

network, is expressed as:

oi = f(wt
ix), for i = 1,2,..., m …(4)

where weight vector wi contains weights leading toward the ith output node and is defined as follows:

wi = [wi1,wi2,...,win]
t, i = 1,2,..., m …(5)

Introducing the nonlinear matrix operator , the mapping of input space x to output space o implemented
by the network can be expressed as follows:

o=[Wx] …(6a)
where W is the weight matrix, also called the connection matrix:

W=[wij], i=1,…,m, j=1,…,n …(6b)

[]=diag(f()) …(6c)

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 30 | Page

Note that the nonlinear activation functions f(.) on the diagonal of the matrix operator  operate component
wise on the activation values net of each neuron.

This type of network can be connected in cascade to create a multilayer network. In such a network, the

output of a layer is the input to the following layer. Even though the FNN has no explicit feedback connection

when x(t) is mapped into o(t), the output values are often compared with the "teacher's" information, which

provides the desired output value [12].

V. NN Learning Algorithms

The user can uses several different training methods although the basic training algorithm is slow compared

to other methods, it can provide, in some cases a better representation of the training set.

5.1 Back Propagation

The BP algorithm is the most effective and most widely used supervised learning method for the

training of multilayered NN, which based on error correction learning rule. BP has two distinct properties;

performs stochastic gradient descent in weight space and it's simple to compute locally. BP is an iterative

gradient algorithm designed to minimize the mean-squared error between the desired output and the actual
output for a particular input to the NN [13].

Basically, BP learning consists of two passes through the different layers of the network: a forward

pass and backward pass.

During the forward pass the synaptic weights of the network are all fixed, during the backward pass, on the

other hand, the synaptic weights are all adjusted in accordance with an error – correction rule.

The learning rate () determines the portion of weight needed to be adjusted. However, the optimum value

of  depends on the problem.

The momentum () determines the fraction of the previous weight adjustment that is added to current weight
adjustment. It accelerates the network convergence process.

During the training process, the learning rate and the momentum are adjusted to bring the network out of its

local minima, and to accelerate the convergence of the network [12].

BP Algorithm

1. Initialize network weights values.

2. Repeat the steps (3-7) until some criterion is reached: (for each training pair).

3. Sums weighted multiplied by input and apply activation function equal compute output of hidden layer.









 



n

1i

ijij
wxfh j =1,2,…,m

m: The actual output of the hidden neuron j for the input signal i.

Sums weighted multiplied by the output of the hidden layer and apply the activation function of the

computed output layer.









 



m

1j

jkjk
whfy k =1,2,…,o

o: The actual output of output neuron k

4. Compute back propagation error:    
kkkk

yfyd 

5. Calculate weight correction term:    1nwhnw
jkjkjk



6. Sums delta input for each hidden unit and calculate error term:

)h(fw
j

o

1k

ijkj
 



7. Calculate weight correction term:    1nwxnw
ijijij



8. Update weights: wjk (new) = wjk (old) + wjk , wij (new) = wij (old) + wij

9. End.

5.2 Particle Swarm Optimization (PSO)
PSO was originally developed by a social-psychologist J. Kennedy and an electrical engineer R.

Eberhart in 1995 and emerged from earlier experiments with algorithms that modeled the “flocking behavior”

seen in many species of birds. Where birds are attracted to a roosting area in simulations they would begin by

flying around with no particular destination and in spontaneously formed flocks until one of the birds flew over

the roosting area. PSO has been an increasingly hot topic in the area of computational intelligence. It is yet

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 31 | Page

another optimization algorithm that falls under the soft computing umbrella that covers genetic and evolutionary

computing algorithms as well [14].

PSO Algorithm

The PSO algorithm depends in its implementation in the following two relations:

vid=w*vid+c1*r1*(pid-xid)+c2*r2*(pgd-id) ...(7a)

xid = xid + vid …(7b)

where c1 and c2 are positive constants, r1 and r2 are random function in the range [0,1],xi=(xi1,xi2,…,xid)

represents the ith particle; pi=(pi1,pi2,…,pid) represents the best previous position (the position giving the best

fitness value) of the ith particle; the symbol g represents the index of the best particle among all the particles in
the population, v=(vi1,vi2,…,vid) represents the rate of the position change (velocity) for particle i [15].

The original procedure for implementing PSO is as follows:

1. Initialize a population of particles with random positions and velocities on d-dimensions in the problem

space.

2. PSO operation includes:

a. For each particle, evaluate the desired optimization fitness function in d variables.

b. Compare particle's fitness evaluation with its pbest. If current value is better than pbest, then set pbest equal

to the current value, and pi equals to the current location xi.

c. Identify the particle in the neighborhood with the best success so far, and assign it index to the variable g.

d. Change the velocity and position of the particle according to equations (7a,b).

3. Loop to step (2) until a criterion is met.
The PSO algorithm is vastly different than any of the traditional methods of training. PSO does not just train

one network, but rather training networks. PSO builds a set number of ANN and initializes all network weights

to random values and starts training each one. PSO compares each network’s fitness. The network with the

highest fitness is considered the global best.

Each neuron contains a position and velocity. The position corresponds to the weight of a neuron. The velocity

is used to update the weight. If a neuron is further away then it will adjust its weight more than a neuron that is

closer to the global best [14].
5.3 Fitness Criterion of NN

One of these stopping criterions is the fitness value. Since the BP and PSO algorithms are chosen to be a

supervised learning algorithms, then there are observed values of (Oi) and desired output values of (Gi). These

two values have to be compared, if they are closed to each other, then the fitness is good, else the algorithm

must continue its calculations until this condition is satisfied or the specified number of iterations is finished.
The corrections to the weights are selected to minimize the residual error between Oi and Gi output. The

Mean Squared Error (MSE) is one of the tests for the comparison process:

 



n

1i

2

ii
GO

n

1
MSE … (8)

Where n is the number of the compared categories.

The number of interconnections for NN for one hidden layer is m(n+o), where n, m and o is the number of

nodes in the input, hidden and output layer respectively.

VI. Constructing of Multi-Layer Neural Network for Single Machine
In scheduling environment, jobs that complete early must be held in finished goods inventory until their due

date, while jobs that complete after their due dates may cause a customer to shut down operations. Therefore, an

ideal schedule is one in which all jobs finish on their assigned due dates. This can be translated to a scheduling

objective in several ways.

The neural network that is proposed for the single machine to minmize the multiple objective functions

(Ci,Ti)) for scheduling problem is organized into three layers of processing units. There is an input layer of 10
units, a hidden layer, and an output layer that has a single unit. The number of units in the input and output

layers is dictated by the specific representation adopted for the schedule problem [16]. In the proposed

representation, the input layer contains the information describing the problem in the form of a vector of

continuous values. The 10 input units are designed to contain the following information showed in Table (3) for

each of the n jobs that have to be scheduled [5].

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 32 | Page

Table (3) 10 units information of input layer units of NN.

Input units

1 2 3 4 5 6 7 8 9 10

p

i

M

p

d

i

M

d

sl

i

M

Sl

10

i


10

i


p

M

p
 1

sl
M

Sl

2

2

i

pn

)pp(





2

2

i

Sln

)SLSl(





where Sli slack for job i s.t Sli = di – pi,

Mp longest processing time among the n jobs = max {pi},

Md longest due date among the n jobs = max {di},

Msl largest slack time for the n jobs = max {Sli}, i=i=1, i∈N, N={1,2,...,n}.





n

1i

i

n

p
p and 




n

1i

i

n

Sl
Sl .

Each job is represented by a 10-input vector, which holds information particular to that job and in relation to

the other jobs in the problem. The output unit assumes values that are in the range of 0.10-0.90, the magnitude
being an indication of where the job represented at the input layer should desirably lie in the schedule. Low

values suggest lead positions in the schedule; higher values indicate less priority and hence position towards the

end of the schedule. The target associated with each input training pattern is a value that indicates the position

occupied in the optimal schedule. The target value Gi for the job holding the ith position in the optimal schedule

is determined as in equation (10) [5];

n,...,2,1i,
1n

1i
8.01.0G

i






















 ...(10)

Equation (10) ensures that the n target values are distributed evenly between 0.1–0.9. The number of units in

the hidden layer is selected by trial and error during the training phase. The final network for single machine

with multi objective has 8 units in its hidden layer and 1 unit of output layer, therefore known as 10-8-1

network.

Example (4)

Recall example (2) for single machine. The 5-jobs are converted first into their vectors representation by

using the set of information of Table (1) input units (1-10). The result of this pre-processing stage is presented

in Table (3) where the vectors J1-J5 represented job numbers 1-5, respectively. To solve the schedule problem,
each vector is presented individually at the input layer of the NN. A feed forward procedure of calculations

generates a value that appears at the output unit for each of the 5 input vectors. The output computed by the NN

for each of the input vectors is given in column before the right most column of Table (4).

Table (4) the 10 input units of example (1) for n=5.

Job
Input units

Oi MSE
1 2 3 4 5 6 7 8 9 10

1 0.5 0.03 0.11 0.1 0.1 0.7 1 0.5 0.27 0.6 0.29

0.0005

2 0.75 0.06 0.33 0.1 0.1 0.7 1 0.5 0.27 0.6 0.46

3 1.0 0.09 0.56 0.1 0.1 0.7 1 0.5 0.27 0.6 0.63

4 0.75 0.07 0.44 0.1 0.1 0.7 1 0.5 0.27 0.6 0.54

5 0.5 0.11 0.10 0.1 0.1 0.7 1 0.5 0.27 0.6 0.62

Scheduling the jobs in the order of the increasing output values results in the job schedule J1-J2-J4-J5-J3 for

(P1) (or (P2)) with objective value (39,6)=45, this sequence is an optimal schedule, so the NN scheduling gives

one of the effecient solutions.

VII. Neural Network Training Results
To train the NN, each vector with their output is presented individually at the input layer and output layer of

the NN. Before we disscuss the NN training we will describe the proposed NN-Scheduling algorithm using BP

and PSO learning algorithms with or without using dominince rule.

NN-Scheduling Algorithm

Step(1): READ (n) { n=number of jobs}

 READ (pi , di) { processing time and due date}

Step(2): DEFINE input units { as input equations in table (3) }

 Calculate Gi { actual value as in equation (10) }

Step(3): INITIALIZATION

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 33 | Page

 Wjkl=random (-1,1) { weight in layer j, node k connected node l }

 Vjkl=random (Vmin,Vmax) {velocity values for PSO only }

Step(4): CHOOSE training algorithm TA=B or P {B=BP , P=PSO}

Step(5): IMSE = Maxint; Error= 0.0001; Threshold=0.01{specified by experiance}

 Iter=1; NI=1000; BSC=Mxint; BST=Maxint;

 WHILE (Iter  NI) OR (IMSE  Error) DO
 Iter = Iter + 1;

 IF TA='B' THEN CALL BP Algorithm

 ELSE CALL PSO Algorithm.

 Compute MSE { using equation (8) }

 =SORT (Oi); (SC(),ST())=MOF();

 IF (SC()<BSC) OR (ST()<BST) THEN

 '=; BSC=SC(); BST=SC(); IMSE=MSE;
 END; {ENDIF}

 END; { ENDWHILE }

Step(6): Best sequence = ' , with minmium BSC and BST;
Step(7): END;
While the NN-scheduling algorithm when using dominiance rule will be as follows:

NN-Dom-Scheduling Algorithm

Step(1): READ (n)

⁞

Step(5): FIND DR of sequence { generate sequence  }
Step(6): IMSE = Maxint; Error= 0.0001; Threshold=0.01{specified by experiance}

 Iter=1; NI=1000; BSC=Mxint; BST=Maxint;

 WHILE (Iter  NI) OR (IMSE  Error) DO
 Iter = Iter + 1;

 IF TA='B' THEN CALL BP Algorithm

 ELSE CALL PSO Algorithm.

 Compute MSE { equation (8) }

 1=SORT (Oi);

 Compute (SC(1),ST(1))=MOF(1); {SC=Ci, ST=Ti)

 CALL SESDR algorithm (2)

 Compute (SC(2),ST(2))=MOF(2);

 IF (SC(1)SC(2)) AND (ST(1)ST(2)) THEN =1 {Def (1)}

 ELSE =2;

 Compute (SC(),ST())=MOF();

 IF (SC()<BSC) OR (ST()<BST) THEN

 '=; BSC=SC(); BST=SC(); IMSE=MSE;
 END; {ENDIF}

 END; { ENDWHILE }

Step(7): Best sequence = ' , with minmium BSC and BST;
Step(8): END;

Training is considered completed after an average more than 10000 cycles using a 10-8-1 configuration. A

cycle is concluded after the network has been exposed once, in the course of the BP or PSO algorithms, to each

one of the available training patterns. The trained NN is used to find job schedule for our problem.

Example (5)

Recall example (2) for problem (P1), in this example the NN-scheduling learned by BP without DR for
problem (P1) , the output results are illustrated Table (5).

Table (5) learning the NN-scheduling using BP without DR for (P1) for n=5.

Iter. MOF Actual Output Seqence MSE

1 (47,16) 0.5 0.3 0.7 0.9 0.1 0.52 0.39 0.36 0.40 0.49 3 2 4 5 1 0.106

4 (44,16) 0.7 0.5 0.9 0.1 0.3 0.47 0.48 0.42 0.34 0.43 4 3 5 1 2 0.071

5 (41,17) 0.9 0.5 0.1 0.3 0.7 0.58 0.61 0.57 0.67 0.53 5 3 1 2 4 0.102

7 (39,11) 0.7 0.1 0.9 0.3 0.5 0.48 0.60 0.62 0.48 0.49 4 1 5 2 3 0.082

378 (39,6)* 0.1 0.3 0.7 0.9 0.5 0.44 0.44 0.56 0.47 0.48 1 2 4 5 3 0.068

6516 (39,6)* 0.1 0.3 0.7 0.9 0.5 0.10 0.30 0.71 0.88 0.50 1 2 4 5 3 0.0001

The total computation time is 7 seconds. The * sign indicates the effeient point.

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 34 | Page

Now we propose the following computations of training NN for different n of (P1):

1. Compare the results of NN-learning methods for BP and PSO without DR (WODR) for problem (P1).

2. Using BP NN-learning (BP-NN) method with DR (WDR) for problem (P1).

3. Compare the results of BB- and PSO-NN WODR for problem (P2).

4. Using BP-NN method with DR (WDR) for problem (P2).

AAE : Average of Absolute Error.













otherwise,0k

valueeffecientanotherEffPorEffPEffVif,0

EffV

EffPEffV
AAE

Where in the following tables:

EffV: The current efficient value, EffP: Efficient point, CE: Complete enumeration, BAB: Branch and Bound is

used for only a time t1000 seconds, CT: Completion time in seconds, NI: number of iterations, and CR:
comparative results.

Tables (6,7,8) show the CR of BP- and PSO-NN WODR for (P1) for different n.
Table (6) CR of BP and PSO-NN WODR for (P1) for n=5,8,10.

n
Eff.

(CE)

NN-BP NN-PSO

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

5

(37,9)

(38,8)

(39,6)

(39,6)

(37,9)
3

88

479
(0,0) (39,6) 3 6 (0,0)

8
(117,61)

(120,60)
(131,74) 11 20 (0.08,0.18) (117,61) 4 1 (0,0)

10

(170,101)

(171,99)

(178,98)

(180,105) 18 481 (0.01,0.04)
(170,101)

(171,99)
9

1

4
(0,0)

Fig. (2) depicts CR of NI and MSE for BP and PSO-NN WODR for (P1) for n=10.

Figure (2) CR of NI and MSE for BP and PSO NN-learning WODR for(P1), n=10.

Table (7) CR of BP- and PSO-NN WODR for (P1) for n=12,15,18.

n
some Eff.

 (BAB)

NN-BP NN-PSO

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

12

(198,85)

(199,82)

 (200,79)

⁞

(213,102)

(220,94)
22

34

201
(0.07,0.10) (198,85) 10 1 (0,0)

15

(281,133)

(282,132)

(283,130)

⁞

(305,146) 22 101 (0.08,0.09)
(281,133)

(284,131)
10

4

6
(0,0)

18

(439,235)

(440,232)

(441,231)

⁞

(502,304) 29 866 (0.13,0.23)

(439,235)

(440,232)

(444,231)

21

2

7

14

(0,0)

0.25

0. 0

0.20

0.15

0.10

Number of

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 35 | Page

Table (8) CR of BP- and PSO-NN WODR for (P1) for n=20,(10),50.

n
Eff.

 (BAB)

NN-BP NN-PSO

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

20

(576,351)

(578,347)

(579,345)

⁞

(670,431) 38 263 (0.14,0.19)

(576,351)

(578,348)

(582,347)

38

1

6

7

(0,0)

30
(1449,1121)

(1450,1119)
(1795,1478) 40 47 (0.19,0.24) (1449,1122) 64 15 (0,0)

40
(2974,2511)

2477,2510)
(3643,3185) 43 43 (0.21,0.21) (2974,2511) 76 1 (0,0)

50 (5026,4472) (5634,5102) 46 137 (0.11,0.12) (5026,4488) 91 2 (0,10
-3

)

Table (9) and Table (10) show the CR of BP-NN methods WODR and WDR for problem (P1) for different n

(n20).
Table (9) CR of BP-NN WODR and WDR for (P1) for n=5,8,10.

n
Eff.

 (CE)

NN-BP without DR NN-BP with DR

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

5

(37,9)

(38,8)

(39,6)

(39,6)

(37,9)
3

88

479
(0,0)

(37,9)

(38,8)

(39,6)

1

1

19

28

(0,0)

8
(117,61)

(120,60)
(131,74) 11 20 (0.08,0.18)

(117,61)

(120,60)
5

31

40
(0,0)

10

(170,101)

(171,99)

(176,98)

(180,105) 18 481 (0.01,0.04)

(170,101)

(171,99)

(176,98)

15

268

415

605

(0,0)

Table (10) CR of BP-NN WODR and WDR for (P1) for n=12,15,18.

n
Eff.

(BAB)

NN-BP without DR NN-BP with DR

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

12

(198,85)

(199,82)

 (200,79)

 (202,77)

(205,75)

(213,102)

(220,94)
22

34

201
(0.07,0.10)

(199,82)

(200,79)

(202,77)

(205,76)

(208,75)

27

7

40

122

579

854

(0,0)

15

(282,132)

(285,128)

(288,127)

⁞

(305,146) 22 101 (0.08,0.09)

(282,132)

(284,131)

(285,128)

(288,127)

(294,126)

18

10

58

69

1767

2319

(0,0)

18

 (444,227)

(447,226)

(450,225)

⁞

(502,304) 29 866 (0.13,0.23)

(447,226)

(452,227)

(454,225)

579

195

260

341

(0,0)

Table (11) shows CR of BP-NN WDR and PSO-NN for problem (P1) for chosen n=(11,14,17,20).

Table (11) CR of BP-NN WDR and PSO-NNfor (P1) for chosen n=11,14,17,20.

n Eff(BAB)
NN-BP with DR NN-PSO

Eff. of P1 CT NI AAE Eff. of P1 CT NI AAE

11

(159,59)

(160,56)

(161,53)

(166,50)

(159,59)

(160,56)

(161,53)

(166,50)

25

3

6

19

46

64

(0,0)

(159,59)

(162,54)

(177,53)

10

2

4

6

(0,0)

14

(266,126)

(267,124) (268,121)

(270,119)

(273,118)

 (276,117)

(267,124)

(269,122)

(270,119)

(273,118)

(276,117)

(279,116)

21

26

27

534

632

641

2267

(0,0)

(266,126)

(268,125)

(269,122)

10

6

10

11

(0,0)

17 (392,197) (392,203) 193 198 (0,0) (387,205) 21 2 (0,0)

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 36 | Page

(395,196)

(398,195)

⁞

(393,198)

(399,195)

613

626

(388,202)

(389,201)

(390,199)

4

8

15

20

(576,351)

(578,347)

(579,345)

⁞

(608,357) -- 11 (0.05,0.02)

(576,351)

(578,348)

(582,347)

38

1

6

7

(0,0)

Table (12) shows the summery of CR of BP-NN WODR,WDR and PSO-NN for effecient points (Eff.) of

problem (P1) and for optimal values (OV) of (P2) which is derived from results of problem (P1) for n=10,(10),50.

Table (12) the summery of CR (BV=sum(Eff.)) of BP-NN WODR,WDR and PSO-NN for (P1) and (P2) for

n=10,(10),50.

n Eff. (BAB)
NN-BP without DR NN-BP with DR NN-PSO

BV=sum(Eff.) AAE BV=sum(Eff.) AAE BV=sum(Eff.) AAE

10

(170,101)=271

(171,99)=270

(176,98)=274

(180,105)=285 0.056

(170,101)=271

(171,99)=270

 (176,98)=274

0

0.004

0.015

(171,99)=270

(170,101)=271

0

0.004

20

 (578,347)=925

(579,345)=924

(581,343)=924

 ⁞

(670,431)=1101 0.189 (608,357)=965 0.042

(576,351)=927

(578,348)=926

(582,347)=929

0

0.003

0.001

30
(1449,1121)=2570

(1450,1119)=2569
(1795,1478)=3273 0.231 ------------ ---- (1449,1122)=2571 0

40
(2974,2511)=5485

(2977,2510)=5487
(3643,3185)=6828 0.245 ------------ ---- (2974,2511)=5485 0

50 (5026,4472)=9498 (5634,5102)=10736 0.130 ------------ ---- (5026,4488)=9514 0.002

MAE 0.153 0.010 0.001

The shaded cells are the effeceint points for problem (P1) and the optimal values for problem (P2) in the

same time copmared with effecient points coloumn.

Table (13) shows the summery of CR of BP-NN WODR,WDR and PSO NN-learning method for BV of (P2)

for n=10,(10),50.

Table (13) CR of BP-NN WODR,WDR and PSO-NN for (P2) for n=10,(10),50.

n

OV (CE,BAB) NN-BP without DR NN-BP with DR NN-PSO

Optimal Value Best Value AAE Best Value AAE Best Value AAE

10 (171+99)=270 (177+107)=284 0.05 (171+99)=270 0 (170+101)=271 0

20 (579+345)=924 (788+569)=1375 0.33 (594,359)=953 0.03 (580+345)=925 0

30 (1453+1116)=2569 (1690+1353)=3043 0.19 ------------ ---- (1449+1121)=2570 0

40 (2975+2510)=5485 (3347+2896)=6243 0.14 ------------ ---- (2974+2516)=5490 0

50 (5030+4468)=9498 (6081+5550)=11631 0.23 ------------ ---- (5026+4472)=9498 0

MAE 0.17 0.01

0

Where MAE is the mean absolute error. The shaded cells are the best values for problem (P2) copmared with

optimal values (OV) coloumn.
In figure (3), the CR of of iterations and MSE for BP- and PSO NN methods without DR for (P2) for n=10 are

shown.

Figure (3) CR of NI and MSE for BP- and PSO NN WODR for (P2) for n=10.

0.25

0. 0

0.20

0.15

0.10

Number of

Constructing of an Artificial Neural Networks to Minimize Total Completion Time and Total Tardiness

www.iosrjournals.org 37 | Page

VIII. Conclusions
1. A single machine with multicriteria has been studied. The objective was to find an effeceint and an best

scheduling of the sum of completion time and sum of tardiness (i,e to minimize the multiple objective

functions (Ci,Ti)). A neural network model was developed to solve this problem. It was found that the

multi layer neural network gave effecent and optimal solutions for n50 system.
2. From Table (12), notice that the performance (Eff. values, BV, AAE and MAE) of NN-BP with DR is best

than NN-BP without DR and the same for PSO for n<20 for (P1) and problem (P2), while PSO is best than

NN-BP without DR for 20n50.
3. From Table (13), notice that the performance (Eff. values, BV, AAE and MAE) of NN-BP with DR is best

than NN-BP without DR and PSO for n<20 for problem (P2), while PSO is best than NN-BP without DR for

20n50.
4. According to the conclusions mentioned in (2) and (3) above, the resaon behined the good performance of

NN-PSO learning method compared with others, that is the swarm behaivour of this method since it using
population of particles each considred as collection of weights for NN and we try to find best collection.

5. As suggetions for futute work, NN can be used for multi machines with multi objective functions.

References
[1]. Ruey-Maw Chen and Yueh-Min Huang, Competitive neural network to solve scheduling problems, ELSEVIER, Neurocomputing

37, 2001, 177-196.

[2]. B. Clow, A comparison of neural network training methods for character recognition, Department of Computer Science Carleton

University, 95.495, 2003.

[3]. T. T. Willems and J. E. Rooda, Neural networks for job-shop scheduling, Control Engineering Practice vol.2, no.1 1994, p.31-39.

[4]. Y. P. S. Foo and Y. Takefuji, Integer linear programming neural networks for job-shop scheduling, IEEE, International Conference

on Neural Networks, Vol. 2, 1998, pp. 341-348.

[5]. A. Hamad, B. Sanugi and S. Salleh, Single machine common due date scheduling problems using neural network, Journal

Teknologi, 36(C): Universiti Teknologi Malaysia, 2002, 75–82.

[6]. A. Muralidhar and T. Alwarsamy, Multi-objective optimization of parallel machine scheduling using neural networks, International

Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 2, Issue 2, March 2013.

[7]. B. S. P. Reddy and C. S. P. Rao, A hybrid multi-objective GA for simultaneous scheduling of machines and AGVS in FMS,

International journal Advance Manufacturing. Technology 31, 2006, 602–613.

[8]. Bo Chen and C. N. Potts, Complexity, algorithms and approximability, Handbook of Combinatorial Optimization, 1998.

[9]. J. A. Hoogeveen, Invited review multicriteria scheduling, European Journal of Operation Research 167, 2005, 592-623.

[10]. B. Kolman, Introductory linear algebra with applications, Macmillan Publishing company, 1988.

[11]. Huajin Tang, Kay Chen Tan and Zhang Yi, Neural networks: computational models and applications, Springer-Verlag Berlin

Heidelberg, 2007.

[12]. J. M. Zurada, Introduction to artificial neural systems, West Publishing Company, 1992.

[13]. R. A. Kadhum, Image noisy reduction using neural network, M.Sc. thesis, Baghdad University, 2004.

[14]. Pomeroy P., An introduction to particle swarm optimization, Article, Mar, www.adaptiveview.com, 2003, p.1-7.

[15]. Y. Shi, Particle swarm optimization, Electronic Data Systems, Inc. Kokomo, IN 46902, USA Feature Article, IEEE Neural

Networks Society, February 2004.

[16]. A. El-Bourni, S. Balakrishnan and N. Popplewell, Sequencing jobs on a single machine: a neural network approach, Euro. Journal

of Op. Res. 126: 2000, 474 – 490.

